# ldpseg **Repository Path**: yang-joseph/ldpseg ## Basic Information - **Project Name**: ldpseg - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 5 - **Created**: 2025-03-27 - **Last Updated**: 2025-03-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # AMOUE *AMOUE: Adaptive modified optimized unary encoding method for local differential privacy data preservation* This repository is the official implementation of the paper: [AMOUE: Adaptive modified optimized unary encoding method for local differential privacy data preservation - ScienceDirect](https://www.sciencedirect.com/science/article/abs/pii/S0045790624007183) ## Citations The details of this pipeline are described in the following paper. If you use this code in your work, please kindly cite it. Thanks. ```bash @article{gao2024amoue, title={AMOUE: Adaptive modified optimized unary encoding method for local differential privacy data preservation}, author={Gao, Tianchong and Fu, Hailong and Wang, Shunwei and Zhang, Niu}, journal={Computers and Electrical Engineering}, volume={120}, number={Part B}, pages={109791}, year={2024}, publisher={Elsevier}, doi={10.1016/j.compeleceng.2024.109791} } ``` ## Installation ```bash pip install -r requirements.txt ``` ## Result The following are our experimental results. We tested our methods under the conditions of different datasets and different privacy budgets. ![result](resources/table.png) ## Instructions ```bash python MNIST.py --perturbation_method=AMOUE --save_data=True python MNIST.py --perturbation_method=MOUE --save_data=True python MNIST.py --perturbation_method=OUE --save_data=True ```