# unet **Repository Path**: yang_haokang/unet ## Basic Information - **Project Name**: unet - **Description**: Generic U-Net Tensorflow 2 implementation for semantic segmentation - **Primary Language**: Unknown - **License**: GPL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-09-22 - **Last Updated**: 2021-09-22 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ============================= Tensorflow Unet ============================= .. image:: https://readthedocs.org/projects/u-net/badge/?version=latest :target: https://u-net.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status .. image:: https://travis-ci.com/jakeret/unet.svg?branch=master :target: https://travis-ci.com/jakeret/unet .. image:: http://img.shields.io/badge/arXiv-1609.09077-orange.svg?style=flat :target: http://arxiv.org/abs/1609.09077 .. image:: https://camo.githubusercontent.com/c8e5db7a5d15b0e7c13480a0ed81db1ae2128b80/68747470733a2f2f62696e6465722e70616e67656f2e696f2f62616467655f6c6f676f2e737667 :target: https://mybinder.org/v2/gh/jakeret/unet/master?filepath=notebooks%2Fcicles.ipynb .. image:: https://camo.githubusercontent.com/52feade06f2fecbf006889a904d221e6a730c194/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667 :target: https://colab.research.google.com/drive/1laPoOaGcqEBB3jTvb-pGnmDU21zwtgJB This is a generic **U-Net** implementation as proposed by `Ronneberger et al. `_ developed with **Tensorflow 2**. This project is a reimplementation of the original `tf_unet `_. Originally, the code was developed and used for `Radio Frequency Interference mitigation using deep convolutional neural networks `_ . The network can be trained to perform image segmentation on arbitrary imaging data. Checkout the `Usage `_ section, the included `Jupyter notebooks `_ or `on Google Colab `_ for a toy problem or the Oxford Pet Segmentation example available on `Google Colab `_. The code is not tied to a specific segmentation such that it can be used in a toy problem to detect circles in a noisy image. .. image:: https://raw.githubusercontent.com/jakeret/unet/master/docs/toy_problem.png :alt: Segmentation of a toy problem. :align: center To more complex application such as the detection of radio frequency interference (RFI) in radio astronomy. .. image:: https://raw.githubusercontent.com/jakeret/unet/master/docs/rfi.png :alt: Segmentation of RFI in radio data. :align: center Or to detect galaxies and star in wide field imaging data. .. image:: https://raw.githubusercontent.com/jakeret/unet/master/docs/galaxies.png :alt: Segmentation of a galaxies. :align: center The architectural elements of a U-Net consist of a contracting and expanding path: .. image:: https://raw.githubusercontent.com/jakeret/unet/master/docs/unet.png :alt: Unet architecture. :align: center As you use **unet** for your exciting discoveries, please cite the paper that describes the package:: @article{akeret2017radio, title={Radio frequency interference mitigation using deep convolutional neural networks}, author={Akeret, Joel and Chang, Chihway and Lucchi, Aurelien and Refregier, Alexandre}, journal={Astronomy and Computing}, volume={18}, pages={35--39}, year={2017}, publisher={Elsevier} }