# CustomerSegmentation **Repository Path**: yang_zi_0709/CustomerSegmentation ## Basic Information - **Project Name**: CustomerSegmentation - **Description**: 客户细分分析 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2020-02-29 - **Last Updated**: 2021-12-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Customer Segmentation > Code and instructions for techniques to creating, visualizing, and interpreting customer segments. In this repo, you will find the code and instructions for [this article](https://towardsdatascience.com/cluster-analysis-create-visualize-and-interpret-customer-segments-474e55d00ebb?source=friends_link&sk=822ed9b7a313062378f56182991a1c3b). It is advised to read through the article whilst coding along using the **Customer Segmentation.ipynb** notebook. This repo and the corresponding article decribe several techniques for clustering, visualizing and interpreting clustering algorithms and output. I explored k-Means and DBSCAN as clustering algorithms, t-SNE and PCA for dimensionality reduction, and applied a variance technique and feature importance to select variables that uniquely represent clusters.