# Face Detection **Repository Path**: ybli_code/Face-Detection ## Basic Information - **Project Name**: Face Detection - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-07-06 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Face Detection Run the application with the `-h` option to see the usage message: ``` python3 Face_Detection.py -h ``` The command yields the following usage message: ``` usage: Face_Detection.py [-h] -m MODEL -i INPUT [-l CPU_EXTENSION] [-d DEVICE] [--labels LABELS] [-pt PROB_THRESHOLD] Options: -h, --help Show this help message and exit. -m MODEL, --model MODEL Required. Path to an .xml file with a trained model. -i INPUT, --input INPUT Required. Path to video file or image. 'cam' for capturing video stream from camera -l CPU_EXTENSION, --cpu_extension CPU_EXTENSION Optional. Required for CPU custom layers. Absolute path to a shared library with the kernels implementations. -d DEVICE, --device DEVICE Optional. Specify the target device to infer on; CPU, GPU, FPGA, HDDL or MYRIAD is acceptable. The demo will look for a suitable plugin for device specified. Default value is CPU --labels LABELS Optional. Path to labels mapping file -pt PROB_THRESHOLD, --prob_threshold PROB_THRESHOLD Optional. Probability threshold for detections filtering --no_show Optional. Don't show output ``` Running the application with the empty list of options yields the usage message given above and an error message. You can use the following command to do inference on GPU with a pre-trained object detection model: ``` python3 Face_Detection.py -i /inputVideo.mp4 -m /ssd.xml -d GPU ``` ## Demo Output The demo uses OpenCV to display the resulting frame with detections (rendered as bounding boxes and labels, if provided). In the default mode the demo reports * **OpenCV time**: frame decoding + time to render the bounding boxes, labels, and displaying the results. * **Detection time**: inference time for the (object detection) network. It is reported in the "SYNC" mode only. * **Wallclock time**, which is combined (application level) performance.