# Variational-Lstm-Autoencoder **Repository Path**: yi-junquan/Variational-Lstm-Autoencoder ## Basic Information - **Project Name**: Variational-Lstm-Autoencoder - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-12-16 - **Last Updated**: 2023-12-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Lstm-Variational-Auto-encoder # ![CI status](https://img.shields.io/cocoapods/l/AFNetworking.svg) Variational auto-encoder for anomaly detection/features extraction, with lstm cells (stateless or stateful). ## Installation ### Requirements `$ pip install --upgrade git+https://github.com/Danyleb/Lstm-Variational-Auto-encoder.git` ## Usage ```python from LstmVAE import LSTM_Var_Autoencoder from LstmVAE import preprocess preprocess(df) #return normalized df, check NaN values replacing it with 0 df = df.reshape(-1,timesteps,n_dim) #use 3D input, n_dim = 1 for 1D time series. vae = LSTM_Var_Autoencoder(intermediate_dim = 15,z_dim = 3, n_dim=1, stateful = True) #default stateful = False vae.fit(df, learning_rate=0.001, batch_size = 100, num_epochs = 200, opt = tf.train.AdamOptimizer, REG_LAMBDA = 0.01, grad_clip_norm=10, optimizer_params=None, verbose = True) """REG_LAMBDA is the L2 loss lambda coefficient, should be set to 0 if not desired. optimizer_param : pass a dict = {} """ x_reconstructed, recons_error = vae.reconstruct(df, get_error = True) #returns squared error x_reduced = vae.reduce(df) #latent space representation ``` ## Contributing Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. ## License [MIT](https://choosealicense.com/licenses/mit/) ## References [Tutorial on variational Autoencoders](https://arxiv.org/pdf/1606.05908.pdf) [A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-based Variational Autoencoder](https://arxiv.org/pdf/1711.00614.pdf) [Variational Autoencoder based Anomaly Detection using Reconstruction Probability](http://dm.snu.ac.kr/static/docs/TR/SNUDM-TR-2015-03.pdf) [The Generalized Reparameterization Gradient](http://www.cs.columbia.edu/~blei/papers/RuizTitsiasBlei2016b.pdf)