# facescape
**Repository Path**: yinlichang19/facescape
## Basic Information
- **Project Name**: facescape
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 1
- **Created**: 2021-01-14
- **Last Updated**: 2021-01-14
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# FaceScape
This is the project page for our paper
"FaceScape: a Large-Scale High Quality 3D Face Dataset and Detailed Riggable 3D Face Prediction".
[[CVPR2020 paper]](https://openaccess.thecvf.com/content_CVPR_2020/papers/Yang_FaceScape_A_Large-Scale_High_Quality_3D_Face_Dataset_and_Detailed_CVPR_2020_paper.pdf) [[supplemetary]](https://openaccess.thecvf.com/content_CVPR_2020/supplemental/Yang_FaceScape_A_Large-Scale_CVPR_2020_supplemental.zip)
We will also update latest progress and available sources to this repository~ **[latest update: 2020/7/25]**
### Dataset
The datasets are released in website: https://facescape.nju.edu.cn/.
The available sources include:
| Item | Description | Quantity | Quality |
|-------------------|---------------------------------------------------------------------|------------------------------------------------|---------|
| TU models | Topologically uniformed 3D face models
with displacement map and texture map. | **16940 models**
(847 id × 20 exp) | Detailed geometry,
4K dp/tex maps |
| Multi-view data | Multi-view images, camera paramters
and coresponding 3D face mesh. | **>400k images**
(359 id × 20 exp
× ≈60 view)| 4M~12M pixels |
| Bilinear model | The statistical model to transform the base
shape into the vector space. | 4 for different settings | Only for base shape. |
| Info list | Gender / age of the subjects. | 847 subjects | -- |
| Tools | Python code to generate **depth map**,
**landmarks**, **facial segmentation**, etc. | -- | -- |
The datasets are only released for non-commercial research use. As facial data involves the privacy of participants, we use strict license terms to ensure that the dataset is not abused. Please visit the [website](https://facescape.nju.edu.cn/) for more information.
### Tools
- [mview](/tools/mview/README.md) - parse and test multi-view images and corresponding 3D models.
- [bilinear model](/tools/bilinear_model/README.md) - simple demo to use facescape bilinear model.
- [landmark](/tools/landmark/README.md) - extract landmarks using predefined vertex index.
- [extract face](/tools/extract_face/README.md) - extract facial region from the mesh of full head.
### Code
Code of 'detailed riggable 3D face prediction' will be released soon.
### ChangeLog
* **2020/7/25**
Multi-view data is available for download, check it [here](/tools/mview/README.md).
Bilinear model with vertex-color has been added to v1.3, check it [here](/tools/bilinear_model/README.md).
Info list including gender and age is available in download page.
Tools and samples are added to this repository.
* **2020/7/7**
Bilinear model v1.2 is updated, check it [here](/tools/bilinear_model/README.md).
* **2020/6/13**
The [website]((https://facescape.nju.edu.cn/)) of FaceScape is online.
3D models and bilinear models are available for download.
* **2020/3/31**
The pre-print paper is available on [arXiv](https://arxiv.org/abs/2003.13989).
### Bibtex
```
@InProceedings{yang2020facescape,
author = {Yang, Haotian and Zhu, Hao and Wang, Yanru and Huang, Mingkai and Shen, Qiu and Yang, Ruigang and Cao, Xun},
title = {FaceScape: A Large-Scale High Quality 3D Face Dataset and Detailed Riggable 3D Face Prediction},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020},
page = {601--610}}
```