# STIDGCN **Repository Path**: youjiax/STIDGCN ## Basic Information - **Project Name**: STIDGCN - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-11-20 - **Last Updated**: 2024-11-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # STIDGCN This is the pytorch implementation of STIDGCN. I hope these codes are helpful to you! [STIDGCN is accepted by TITS (IEEE Transactions on Intelligent Transportation Systems).](https://ieeexplore.ieee.org/document/10440184)

## Requirements The code is built based on Python 3.9.12, PyTorch 1.11.0, and NumPy 1.21.2. ## Datasets We provide preprocessed datasets that you can access [here](https://drive.google.com/drive/folders/1-5hKD4hKd0eRdagm4MBW1g5kjH5qgmHR?usp=sharing). If you need the original datasets, please refer to [STSGCN](https://github.com/Davidham3/STSGCN) (including PEMS03, PEMS04, PEMS07, and PEMS08) and [ESG](https://github.com/LiuZH-19/ESG) (including NYCBike and NYCTaxi). ## Train Commands It's easy to run! Here are some examples, and you can customize the model settings in train.py. ### PEMS08 ``` nohup python -u train.py --data PEMS08 --batch_size 64 > PEMS08.log & ``` ### NYCBike Drop-off ``` nohup python -u train.py --data bike_drop --batch_size 16 > bike_drop.log & ``` ### TDrive Inflow ``` nohup python -u train_grid.py --data TDrive_i --batch_size 16 > TDrive_i.log & ``` ## Results

## Acknowledgments Our model is built based on model of [Graph WaveNet](https://github.com/nnzhan/Graph-WaveNet) and [SCINet](https://github.com/cure-lab/SCINet).