# VoxelNet-pytorch **Repository Path**: yu_wei_wei/VoxelNet-pytorch ## Basic Information - **Project Name**: VoxelNet-pytorch - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 2 - **Created**: 2020-03-26 - **Last Updated**: 2021-06-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Introduction This is an unofficial implementation of [VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection](https://arxiv.org/abs/1711.06396) in pytorch. A large part of this project is based on the work [here](https://github.com/jeasinema/VoxelNet-tensorflow) # Dependencies - `python3.5+` - `pytorch` (tested on 0.3.1) - `opencv` - `shapely` - `mayavi` # Installation 1. Clone this repository. 2. Compile the Cython module for box_overlaps ```bash $ python3 setup.py build_ext --inplace ``` 3. Compile the nms model ```bash $ python3 nms/build.py ``` # Data Preparation 1. Download the 3D KITTI detection dataset from [here](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d). Data to download include: * Velodyne point clouds (29 GB): input data to VoxelNet * Training labels of object data set (5 MB): input label to VoxelNet * Camera calibration matrices of object data set (16 MB): for visualization of predictions * Left color images of object data set (12 GB): for visualization of predictions 2. In this project, the cropped point cloud data for training and validation. Point clouds outside the image coordinates are removed. ```bash $ python3 data/crop.py ``` 3. Split the training set into training and validation set according to the protocol [here](https://xiaozhichen.github.io/files/mv3d/imagesets.tar.gz). ```plain └── DATA_DIR ├── training <-- training data | ├── image_2 | ├── label_2 | ├── velodyne | └── crop └── testing <--- testing data | ├── image_2 | ├── label_2 | ├── velodyne | └── crop ``` # Train # TODO - [x] training code - [x] data augmentation - [ ] validation code - [ ] reproduce results for `Car`, `Pedestrian` and `Cyclist` - [ ] multi-gpu support - [ ] improve the performances