# coperception
**Repository Path**: yujmo/coperception
## Basic Information
- **Project Name**: coperception
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2024-10-21
- **Last Updated**: 2024-10-21
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# CoPerception
An SDK for collaborative perception
[](https://coperception.readthedocs.io/en/latest/?badge=latest)

[](https://github.com/coperception/coperception/issues)

[](https://GitHub.com/coperception/coperception/stargazers/)
---
## Getting started:
Please refer to our docs website for detailed documentations: https://coperception.readthedocs.io/en/latest/
### Installation
- [Installation documentations](https://coperception.readthedocs.io/en/latest/getting_started/installation/)
### Download dataset
- [V2X-Sim](https://coperception.readthedocs.io/en/latest/datasets/v2x_sim/)
How to run the following tasks:
- [Detection](https://coperception.readthedocs.io/en/latest/tools/det/)
- [Segmentation](https://coperception.readthedocs.io/en/latest/tools/seg/)
- [Tracking](https://coperception.readthedocs.io/en/latest/tools/track/)
## Supported models
- [x] [DiscoNet](https://arxiv.org/abs/2111.00643)
- [x] [V2VNet](https://arxiv.org/abs/2008.07519)
- [x] [When2com](https://arxiv.org/abs/2006.00176)
- [x] [Who2com](https://arxiv.org/abs/2003.09575)
- [ ] [V2X-ViT](https://github.com/DerrickXuNu/v2x-vit) (coming soon)
Download checkpoints: [Google Drive (US)](https://drive.google.com/drive/folders/1NMag-yZSflhNw4y22i8CHTX5l8KDXnNd)
See `README.md` in `./tools/det`, `./tools/seg`, and `./tools/track` for model performance under different tasks.
## Supported datasets
- [x] [V2X-Sim](https://ai4ce.github.io/V2X-Sim/)
- [ ] [DAIR-V2X](https://thudair.baai.ac.cn/index) (coming soon)
- [ ] [OPV2V](https://mobility-lab.seas.ucla.edu/opv2v/) (coming soon)
## Related works
- [DiscoNet Github repo](https://github.com/ai4ce/DiscoNet)
- [V2X-Sim Github repo](https://github.com/ai4ce/V2X-Sim)
## Related papers
V2X-Sim dataset:
```bibtex
@article{Li_2021_RAL,
title = {V2X-Sim: A Virtual Collaborative Perception Dataset and Benchmark for Autonomous Driving},
author = {Li, Yiming and Ma, Dekun and An, Ziyan and Wang, Zixun and Zhong, Yiqi and Chen, Siheng and Feng, Chen},
booktitle = {IEEE Robotics and Automation Letters},
year = {2022}
}
```
DisoNet:
```bibtex
@article{li2021learning,
title={Learning distilled collaboration graph for multi-agent perception},
author={Li, Yiming and Ren, Shunli and Wu, Pengxiang and Chen, Siheng and Feng, Chen and Zhang, Wenjun},
journal={Advances in Neural Information Processing Systems},
volume={34},
pages={29541--29552},
year={2021}
}
```
V2VNet:
```bibtex
@inproceedings{wang2020v2vnet,
title={V2vnet: Vehicle-to-vehicle communication for joint perception and prediction},
author={Wang, Tsun-Hsuan and Manivasagam, Sivabalan and Liang, Ming and Yang, Bin and Zeng, Wenyuan and Urtasun, Raquel},
booktitle={European Conference on Computer Vision},
pages={605--621},
year={2020},
organization={Springer}
}
```
When2com:
```bibtex
@inproceedings{liu2020when2com,
title={When2com: Multi-agent perception via communication graph grouping},
author={Liu, Yen-Cheng and Tian, Junjiao and Glaser, Nathaniel and Kira, Zsolt},
booktitle={Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition},
pages={4106--4115},
year={2020}
}
```
Who2com:
```bibtex
@inproceedings{liu2020who2com,
title={Who2com: Collaborative perception via learnable handshake communication},
author={Liu, Yen-Cheng and Tian, Junjiao and Ma, Chih-Yao and Glaser, Nathan and Kuo, Chia-Wen and Kira, Zsolt},
booktitle={2020 IEEE International Conference on Robotics and Automation (ICRA)},
pages={6876--6883},
year={2020},
organization={IEEE}
}
```
OPV2V:
```bibtex
@inproceedings{xu2022opencood,
author = {Runsheng Xu, Hao Xiang, Xin Xia, Xu Han, Jinlong Li, Jiaqi Ma},
title = {OPV2V: An Open Benchmark Dataset and Fusion Pipeline for Perception with Vehicle-to-Vehicle Communication},
booktitle = {2022 IEEE International Conference on Robotics and Automation (ICRA)},
year = {2022}
}
```