# coperception **Repository Path**: yujmo/coperception ## Basic Information - **Project Name**: coperception - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-10-21 - **Last Updated**: 2024-10-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
# CoPerception

An SDK for collaborative perception

[![Documentation Status](https://readthedocs.org/projects/coperception/badge/?version=latest)](https://coperception.readthedocs.io/en/latest/?badge=latest) ![PyTorch](https://img.shields.io/badge/PyTorch-%23EE4C2C.svg?logo=PyTorch&logoColor=white) [![GitHub issues total](https://badgen.net/github/issues/coperception/coperception)](https://github.com/coperception/coperception/issues) ![GitHub issues](https://img.shields.io/github/issues/coperception/coperception) [![GitHub stars](https://img.shields.io/github/stars/coperception/coperception.svg?style=social&label=Star&maxAge=2592000)](https://GitHub.com/coperception/coperception/stargazers/) ---
## Getting started: Please refer to our docs website for detailed documentations: https://coperception.readthedocs.io/en/latest/ ### Installation - [Installation documentations](https://coperception.readthedocs.io/en/latest/getting_started/installation/) ### Download dataset - [V2X-Sim](https://coperception.readthedocs.io/en/latest/datasets/v2x_sim/) How to run the following tasks: - [Detection](https://coperception.readthedocs.io/en/latest/tools/det/) - [Segmentation](https://coperception.readthedocs.io/en/latest/tools/seg/) - [Tracking](https://coperception.readthedocs.io/en/latest/tools/track/) ## Supported models - [x] [DiscoNet](https://arxiv.org/abs/2111.00643) - [x] [V2VNet](https://arxiv.org/abs/2008.07519) - [x] [When2com](https://arxiv.org/abs/2006.00176) - [x] [Who2com](https://arxiv.org/abs/2003.09575) - [ ] [V2X-ViT](https://github.com/DerrickXuNu/v2x-vit) (coming soon) Download checkpoints: [Google Drive (US)](https://drive.google.com/drive/folders/1NMag-yZSflhNw4y22i8CHTX5l8KDXnNd) See `README.md` in `./tools/det`, `./tools/seg`, and `./tools/track` for model performance under different tasks. ## Supported datasets - [x] [V2X-Sim](https://ai4ce.github.io/V2X-Sim/) - [ ] [DAIR-V2X](https://thudair.baai.ac.cn/index) (coming soon) - [ ] [OPV2V](https://mobility-lab.seas.ucla.edu/opv2v/) (coming soon) ## Related works - [DiscoNet Github repo](https://github.com/ai4ce/DiscoNet) - [V2X-Sim Github repo](https://github.com/ai4ce/V2X-Sim) ## Related papers V2X-Sim dataset: ```bibtex @article{Li_2021_RAL, title = {V2X-Sim: A Virtual Collaborative Perception Dataset and Benchmark for Autonomous Driving}, author = {Li, Yiming and Ma, Dekun and An, Ziyan and Wang, Zixun and Zhong, Yiqi and Chen, Siheng and Feng, Chen}, booktitle = {IEEE Robotics and Automation Letters}, year = {2022} } ``` DisoNet: ```bibtex @article{li2021learning, title={Learning distilled collaboration graph for multi-agent perception}, author={Li, Yiming and Ren, Shunli and Wu, Pengxiang and Chen, Siheng and Feng, Chen and Zhang, Wenjun}, journal={Advances in Neural Information Processing Systems}, volume={34}, pages={29541--29552}, year={2021} } ``` V2VNet: ```bibtex @inproceedings{wang2020v2vnet, title={V2vnet: Vehicle-to-vehicle communication for joint perception and prediction}, author={Wang, Tsun-Hsuan and Manivasagam, Sivabalan and Liang, Ming and Yang, Bin and Zeng, Wenyuan and Urtasun, Raquel}, booktitle={European Conference on Computer Vision}, pages={605--621}, year={2020}, organization={Springer} } ``` When2com: ```bibtex @inproceedings{liu2020when2com, title={When2com: Multi-agent perception via communication graph grouping}, author={Liu, Yen-Cheng and Tian, Junjiao and Glaser, Nathaniel and Kira, Zsolt}, booktitle={Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition}, pages={4106--4115}, year={2020} } ``` Who2com: ```bibtex @inproceedings{liu2020who2com, title={Who2com: Collaborative perception via learnable handshake communication}, author={Liu, Yen-Cheng and Tian, Junjiao and Ma, Chih-Yao and Glaser, Nathan and Kuo, Chia-Wen and Kira, Zsolt}, booktitle={2020 IEEE International Conference on Robotics and Automation (ICRA)}, pages={6876--6883}, year={2020}, organization={IEEE} } ``` OPV2V: ```bibtex @inproceedings{xu2022opencood, author = {Runsheng Xu, Hao Xiang, Xin Xia, Xu Han, Jinlong Li, Jiaqi Ma}, title = {OPV2V: An Open Benchmark Dataset and Fusion Pipeline for Perception with Vehicle-to-Vehicle Communication}, booktitle = {2022 IEEE International Conference on Robotics and Automation (ICRA)}, year = {2022} } ```