# DeepSpeech **Repository Path**: yukio233/DeepSpeech ## Basic Information - **Project Name**: DeepSpeech - **Description**: No description available - **Primary Language**: Unknown - **License**: MPL-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-02-19 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Project DeepSpeech ================== .. image:: https://readthedocs.org/projects/deepspeech/badge/?version=latest :target: http://deepspeech.readthedocs.io/?badge=latest :alt: Documentation .. image:: https://community-tc.services.mozilla.com/api/github/v1/repository/mozilla/DeepSpeech/master/badge.svg :target: https://community-tc.services.mozilla.com/api/github/v1/repository/mozilla/DeepSpeech/master/latest :alt: Task Status DeepSpeech is an open source Speech-To-Text engine, using a model trained by machine learning techniques based on `Baidu's Deep Speech research paper `_. Project DeepSpeech uses Google's `TensorFlow `_ to make the implementation easier. **NOTE:** This documentation applies to the **MASTER version** of DeepSpeech only. If you're using a stable release, you must use the documentation for the corresponding version by using GitHub's branch switcher button above. To install and use deepspeech all you have to do is: .. code-block:: bash # Create and activate a virtualenv virtualenv -p python3 $HOME/tmp/deepspeech-venv/ source $HOME/tmp/deepspeech-venv/bin/activate # Install DeepSpeech pip3 install deepspeech # Download pre-trained English model and extract curl -LO https://github.com/mozilla/DeepSpeech/releases/download/v0.6.1/deepspeech-0.6.1-models.tar.gz tar xvf deepspeech-0.6.1-models.tar.gz # Download example audio files curl -LO https://github.com/mozilla/DeepSpeech/releases/download/v0.6.1/audio-0.6.1.tar.gz tar xvf audio-0.6.1.tar.gz # Transcribe an audio file deepspeech --model deepspeech-0.6.1-models/output_graph.pbmm --scorer deepspeech-0.6.1-models/kenlm.scorer --audio audio/2830-3980-0043.wav A pre-trained English model is available for use and can be downloaded using `the instructions below `_. A package with some example audio files is available for download in our `release notes `_. Quicker inference can be performed using a supported NVIDIA GPU on Linux. See the `release notes `_ to find which GPUs are supported. To run ``deepspeech`` on a GPU, install the GPU specific package: .. code-block:: bash # Create and activate a virtualenv virtualenv -p python3 $HOME/tmp/deepspeech-gpu-venv/ source $HOME/tmp/deepspeech-gpu-venv/bin/activate # Install DeepSpeech CUDA enabled package pip3 install deepspeech-gpu # Transcribe an audio file. deepspeech --model deepspeech-0.6.1-models/output_graph.pbmm --scorer deepspeech-0.6.1-models/kenlm.scorer --audio audio/2830-3980-0043.wav Please ensure you have the required `CUDA dependencies `_. See the output of ``deepspeech -h`` for more information on the use of ``deepspeech``. (If you experience problems running ``deepspeech``\ , please check `required runtime dependencies `_\ ). ---- **Table of Contents** * `Using a Pre-trained Model `_ * `CUDA dependency `_ * `Getting the pre-trained model `_ * `Model compatibility `_ * `Using the Python package `_ * `Using the Node.JS package `_ * `Using the Command Line client `_ * `Installing bindings from source `_ * `Third party bindings `_ * `Trying out DeepSpeech with examples `_ * `Training your own Model `_ * `Prerequisites for training a model `_ * `Getting the training code `_ * `Installing Python dependencies `_ * `Recommendations `_ * `Common Voice training data `_ * `Training a model `_ * `Checkpointing `_ * `Exporting a model for inference `_ * `Exporting a model for TFLite `_ * `Making a mmap-able model for inference `_ * `Continuing training from a release model `_ * `Training with Augmentation `_ * `Contribution guidelines `_ * `Contact/Getting Help `_