# bert-multitask-learning **Repository Path**: yuxindong/bert-multitask-learning ## Basic Information - **Project Name**: bert-multitask-learning - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-05-19 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ![python](https://img.shields.io/badge/python%20-3.6.0-brightgreen.svg) [![tensorflow](https://img.shields.io/badge/tensorflow-1.13.1-green.svg)](https://www.tensorflow.org/) [![PyPI version fury.io](https://badge.fury.io/py/ansicolortags.svg)](https://pypi.python.org/pypi/bert-multitask-learning/) [![PyPI license](https://img.shields.io/pypi/l/ansicolortags.svg)](https://pypi.python.org/pypi/bert-multitask-learning/) # Bert for Multi-task Learning [中文文档](#Bert多任务学习) ## Install ``` pip install bert-multitask-learning ``` ## What is it This a project that uses [BERT](https://github.com/google-research/bert) to do **multi-task learning** with multiple GPU support. ## Why do I need this In the original BERT code, neither multi-task learning or multiple GPU training is possible. Plus, the original purpose of this project is NER which dose not have a working script in the original BERT code. To sum up, compared to the original bert repo, this repo has the following features: 1. Multi-task learning(major reason of re-writing the majority of code). 2. Multiple GPU training 3. Support sequence labeling (for example, NER) and Encoder-Decoder Seq2Seq(with transformer decoder). ## What type of problems are supported? - Masked LM and next sentence prediction Pre-train(pretrain) - Classification(cls) - Sequence Labeling(seq_tag) - Seq2seq Labeling(seq2seq_tag) - Seq2seq Text Generation(seq2seq_text) - Multi-Label Classification(multi_cls) ## How to run pre-defined problems There are two types of chaining operations can be used to chain problems. - `&`. If two problems have the same inputs, they can be chained using `&`. Problems chained by `&` will be trained at the same time. - `|`. If two problems don't have the same inputs, they need to be chained using `|`. Problems chained by `|` will be sampled to train at every instance. For example, `cws|NER|weibo_ner&weibo_cws`, one problem will be sampled at each turn, say `weibo_ner&weibo_cws`, then `weibo_ner` and `weibo_cws` will trained for this turn together. Therefore, in a particular batch, some tasks might not be sampled, and their loss could be 0 in this batch. Please see the examples in [notebooks](notebooks/) for more details about training, evaluation and export models. # Bert多任务学习 ## 安装 ``` pip install bert-multitask-learning ``` ## 这是什么 这是利用[BERT](https://github.com/google-research/bert)进行**多任务学习**并且支持多GPU训练的项目. ## 我为什么需要这个项目 在原始的BERT代码中, 是没有办法直接用多GPU进行多任务学习的. 另外, BERT并没有给出序列标注和Seq2seq的训练代码. 因此, 和原来的BERT相比, 这个项目具有以下特点: 1. 多任务学习 2. 多GPU训练 3. 序列标注以及Encoder-decoder seq2seq的支持(用transformer decoder) ## 目前支持的任务类型 - Masked LM和next sentence prediction预训练(pretrain) - 单标签分类(cls) - 序列标注(seq_tag) - 序列到序列标签标注(seq2seq_tag) - 序列到序列文本生成(seq2seq_text) - 多标签分类(multi_cls) ## 如何运行预定义任务 ### 目前支持的任务 - 中文命名实体识别 - 中文分词 - 中文词性标注 可以用两种方法来将多个任务连接起来. - `&`. 如果两个任务有相同的输入, 不同标签的话, 那么他们**可以**用`&`来连接. 被`&`连接起来的任务会被同时训练. - `|`. 如果两个任务为不同的输入, 那么他们**必须**用`|`来连接. 被`|`连接起来的任务会被随机抽取来训练. 例如, 我们定义任务`cws|NER|weibo_ner&weibo_cws`, 那么在生成每一条数据时, 一个任务块会被随机抽取出来, 例如在这一次抽样中, `weibo_ner&weibo_cws`被选中. 那么这次`weibo_ner`和`weibo_cws`会被同时训练. 因此, 在一个batch中, 有可能某些任务没有被抽中, loss为0. 训练, eval和导出模型请见[notebooks](notebooks/)