# DeepCTR-Torch **Repository Path**: zanshuxun/DeepCTR-Torch ## Basic Information - **Project Name**: DeepCTR-Torch - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-11-27 - **Last Updated**: 2021-05-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # DeepCTR-Torch [![Python Versions](https://img.shields.io/pypi/pyversions/deepctr-torch.svg)](https://pypi.org/project/deepctr-torch) [![Downloads](https://pepy.tech/badge/deepctr-torch)](https://pepy.tech/project/deepctr-torch) [![PyPI Version](https://img.shields.io/pypi/v/deepctr-torch.svg)](https://pypi.org/project/deepctr-torch) [![GitHub Issues](https://img.shields.io/github/issues/shenweichen/deepctr-torch.svg )](https://github.com/shenweichen/deepctr-torch/issues) [![Documentation Status](https://readthedocs.org/projects/deepctr-torch/badge/?version=latest)](https://deepctr-torch.readthedocs.io/) ![CI status](https://github.com/shenweichen/deepctr-torch/workflows/CI/badge.svg) [![codecov](https://codecov.io/gh/shenweichen/DeepCTR-Torch/branch/master/graph/badge.svg)](https://codecov.io/gh/shenweichen/DeepCTR-Torch) [![Disscussion](https://img.shields.io/badge/chat-wechat-brightgreen?style=flat)](./README.md#disscussiongroup) [![License](https://img.shields.io/github/license/shenweichen/deepctr-torch.svg)](https://github.com/shenweichen/deepctr-torch/blob/master/LICENSE) PyTorch version of [DeepCTR](https://github.com/shenweichen/DeepCTR). DeepCTR is a **Easy-to-use**,**Modular** and **Extendible** package of deep-learning based CTR models along with lots of core components layers which can be used to build your own custom model easily.You can use any complex model with `model.fit()`and `model.predict()` .Install through `pip install -U deepctr-torch`. Let's [**Get Started!**](https://deepctr-torch.readthedocs.io/en/latest/Quick-Start.html)([Chinese Introduction](https://zhuanlan.zhihu.com/p/53231955)) ## Models List | Model | Paper | | :------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------- | | Convolutional Click Prediction Model | [CIKM 2015][A Convolutional Click Prediction Model](http://ir.ia.ac.cn/bitstream/173211/12337/1/A%20Convolutional%20Click%20Prediction%20Model.pdf) | | Factorization-supported Neural Network | [ECIR 2016][Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction](https://arxiv.org/pdf/1601.02376.pdf) | | Product-based Neural Network | [ICDM 2016][Product-based neural networks for user response prediction](https://arxiv.org/pdf/1611.00144.pdf) | | Wide & Deep | [DLRS 2016][Wide & Deep Learning for Recommender Systems](https://arxiv.org/pdf/1606.07792.pdf) | | DeepFM | [IJCAI 2017][DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](http://www.ijcai.org/proceedings/2017/0239.pdf) | | Piece-wise Linear Model | [arxiv 2017][Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction](https://arxiv.org/abs/1704.05194) | | Deep & Cross Network | [ADKDD 2017][Deep & Cross Network for Ad Click Predictions](https://arxiv.org/abs/1708.05123) | | Attentional Factorization Machine | [IJCAI 2017][Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](http://www.ijcai.org/proceedings/2017/435) | | Neural Factorization Machine | [SIGIR 2017][Neural Factorization Machines for Sparse Predictive Analytics](https://arxiv.org/pdf/1708.05027.pdf) | | xDeepFM | [KDD 2018][xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://arxiv.org/pdf/1803.05170.pdf) | | Deep Interest Network | [KDD 2018][Deep Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1706.06978.pdf) | | Deep Interest Evolution Network | [AAAI 2019][Deep Interest Evolution Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1809.03672.pdf) | | AutoInt | [CIKM 2019][AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](https://arxiv.org/abs/1810.11921) | | ONN | [arxiv 2019][Operation-aware Neural Networks for User Response Prediction](https://arxiv.org/pdf/1904.12579.pdf) | | FiBiNET | [RecSys 2019][FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction](https://arxiv.org/pdf/1905.09433.pdf) | | IFM | [IJCAI 2019][An Input-aware Factorization Machine for Sparse Prediction](https://www.ijcai.org/Proceedings/2019/0203.pdf) | | DCN V2 | [arxiv 2020][DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/abs/2008.13535) | | DIFM | [IJCAI 2020][A Dual Input-aware Factorization Machine for CTR Prediction](https://www.ijcai.org/Proceedings/2020/0434.pdf) | ## DisscussionGroup & Related Projects
公众号:浅梦的学习笔记

微信:deepctrbot

## Contributors([welcome to join us!](./CONTRIBUTING.md))
pic
Shen Weichen

Core Dev
Zhejiang Unversity

pic
Zan Shuxun

Core Dev
Beijing University
of Posts and
Telecommunications

pic
Wang Ze

Core Dev
Beihang University

pic
Zhang Wutong

Core Dev
Beijing University
of Posts and
Telecommunications

pic
Zhang Yuefeng

Core Dev
Peking University

pic
Huo Junyi

Core Dev
University of Southampton

pic
Zeng Kai

Dev
SenseTime

pic
Chen K

Dev
NetEase

pic
Tang

Test
Tongji University

pic
Xu Qidi

Dev
University of
Electronic Science and
Technology of China