# IS303 **Repository Path**: zerzerzerz/IS303 ## Basic Information - **Project Name**: IS303 - **Description**: Project code for IS303, SJTU Multi-label classification Deep Learning methods and Machine Learning methods - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-05-07 - **Last Updated**: 2022-05-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # README - Project code for IS303, SJTU - Multiple classification ## Download Data - Virus data comes from [Paper](https://arxiv.org/abs/2103.00602) and [Data](https://www.kaggle.com/datasets/datamunge/virusmnist) - Put your train data `train.csv` under `./data` - Put your test data `test.csv` under `./data` ## Envs - Python==3.6 - PyTorch==1.7.1 - tqdm==4.64.0 - scikit-learn==0.24.2 ## Preprocessing Data - Follow instructions in `get_data.ipynb` and run this notebook to preprocess data ## Running NN Methods - `python main.py`, you can find the result in `result` - More configurations in `main.py` or run `python main.py -h` ## Running ML Methods - `python ml.py --model_type `, you can find the result in `result_ml` ```console model_type DecisionTree RandomForest SVM ```