# machine-learning-algorithm **Repository Path**: zhanghy9638/machine-learning-algorithm ## Basic Information - **Project Name**: machine-learning-algorithm - **Description**: 记录小润了解的各种机器学习算法的实现以及基础概念,包括有监督学习,无监督学习,分类,聚类,回归;神经元模型,多层感知器,BP算法;损失函数,激活函数,梯度下降法;全连接网络、卷积神经网络、递归神经网络;训练集,测试集,交叉验证,欠拟合,过拟合;数据规范化等 - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 5 - **Forks**: 3 - **Created**: 2019-05-22 - **Last Updated**: 2023-04-15 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Machine Learning 记录小润了解的各种机器学习算法,包括用Python的原生实现以及调用机器学习库sklearn的实现。 |名称 |目录 | |:--------------------|-------------| | 线性回归 Linear Regression | [[dir]](https://github.com/zhourunlai/machine-learning-algorithm/tree/master/logistic-regression)| | KNN | [[dir]](https://github.com/zhourunlai/machine-learning-algorithm/tree/master/KNN)| | 朴素贝叶斯 Naive Bayes | [[dir]](https://github.com/zhourunlai/machine-learning-algorithm/tree/master/Naive-bayes)| | 决策树 Decision Tree | [[dir]](https://github.com/zhourunlai/machine-learning-algorithm/tree/master/decision-tree)| | 逻辑回归 Logisitc Regression | [[dir]](https://github.com/zhourunlai/machine-learning-algorithm/tree/master/logistic-regression)| | 支持向量机 SVM | [[dir]](https://github.com/zhourunlai/machine-learning-algorithm/tree/master/SVM)| | K Means | [[dir]](https://github.com/zhourunlai/machine-learning-algorithm/tree/master/K-Means)| ## 学习资料 * [学习资料集合](https://github.com/zhourunlai/machine-learning-algorithm/tree/master/ML%20%26%20DL) * [《机器学习实战》](http://book.douban.com/subject/24703171/) [项目代码地址](https://github.com/zhourunlai/machine-learning-in-action) * [《集体智慧编程》](http://book.douban.com/subject/3288908/) * [《统计学习方法》](http://book.douban.com/subject/10590856/) * [ coursera-ML](https://www.coursera.org/learn/machine-learning) * [ 机器学习基石](https://www.coursera.org/course/ntumlone) * [Microsoft: DAT208x Introduction to Python for Data Science](https://courses.edx.org/courses/course-v1:Microsoft+DAT208x+1T2016) * [Microsoft: DAT204x Introduction to R](https://courses.edx.org/courses/course-v1:Microsoft+DAT204x+1T2016/)