# CenterNet2 **Repository Path**: zhangming8/CenterNet2 ## Basic Information - **Project Name**: CenterNet2 - **Description**: https://github.com/xingyizhou/CenterNet2 - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 1 - **Created**: 2021-06-23 - **Last Updated**: 2022-12-23 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Probabilistic two-stage detection Two-stage object detectors that use class-agnostic one-stage detectors as the proposal network.

> [**Probabilistic two-stage detection**](http://arxiv.org/abs/2103.07461), > Xingyi Zhou, Vladlen Koltun, Philipp Krähenbühl, > *arXiv technical report ([arXiv 2103.07461](http://arxiv.org/abs/2103.07461))* Contact: [zhouxy@cs.utexas.edu](mailto:zhouxy@cs.utexas.edu). Any questions or discussions are welcomed! ## Summary - Two-stage CenterNet: First stage estimates object probabilities, second stage conditionally classifies objects. - Resulting detector is faster and more accurate than both traditional two-stage detectors (fewer proposals required), and one-stage detectors (lighter first stage head). - Our best model achieves 56.4 mAP on COCO test-dev. - This repo also includes a detectron2-based CenterNet implementation with better accuracy (42.5 mAP at 70FPS) and a new FPN version of CenterNet (40.2 mAP with Res50_1x). ## Main results All models are trained with multi-scale training, and tested with a single scale. The FPS is tested on a Titan RTX GPU. More models and details can be found in the [MODEL_ZOO](docs/MODEL_ZOO.md). #### COCO | Model | COCO val mAP | FPS | |-------------------------------------------|---------------|-------| | CenterNet-S4_DLA_8x | 42.5 | 71 | | CenterNet2_R50_1x | 42.9 | 24 | | CenterNet2_X101-DCN_2x | 49.9 | 8 | | CenterNet2_R2-101-DCN-BiFPN_4x+4x_1560_ST | 56.1 | 5 | | CenterNet2_DLA-BiFPN-P5_24x_ST | 49.2 | 38 | #### LVIS | Model | val mAP box | | ------------------------- | ----------- | | CenterNet2_R50_1x | 26.5 | | CenterNet2_FedLoss_R50_1x | 28.3 | #### Objects365 | Model | val mAP | |-------------------------------------------|----------| | CenterNet2_R50_1x | 22.6 | ## Installation Our project is developed on [detectron2](https://github.com/facebookresearch/detectron2). Please follow the official detectron2 [installation](https://github.com/facebookresearch/detectron2/blob/master/INSTALL.md). We use the default detectron2 demo script. To run inference on an image folder using our pre-trained model, run ~~~ python demo.py --config-file configs/CenterNet2_R50_1x.yaml --input path/to/image/ --opts MODEL.WEIGHTS models/CenterNet2_R50_1x.pth ~~~ ## Benchmark evaluation and training Please check detectron2 [GETTING_STARTED.md](https://github.com/facebookresearch/detectron2/blob/master/GETTING_STARTED.md) for running evaluation and training. Our config files are under `configs` and the pre-trained models are in the [MODEL_ZOO](docs/MODEL_ZOO.md). ## License Our code is under [Apache 2.0 license](LICENSE). `centernet/modeling/backbone/bifpn_fcos.py` are from [AdelaiDet](https://github.com/aim-uofa/AdelaiDet), which follows the original [non-commercial license](https://github.com/aim-uofa/AdelaiDet/blob/master/LICENSE). ## Citation If you find this project useful for your research, please use the following BibTeX entry. @inproceedings{zhou2021probablistic, title={Probabilistic two-stage detection}, author={Zhou, Xingyi and Koltun, Vladlen and Kr{\"a}henb{\"u}hl, Philipp}, booktitle={arXiv preprint arXiv:2103.07461}, year={2021} }