# fpn.pytorch **Repository Path**: zhangzexu/fpn.pytorch ## Basic Information - **Project Name**: fpn.pytorch - **Description**: No description available - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-01-03 - **Last Updated**: 2022-01-03 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README fpn.pytorch Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection ## Introduction This project inherits the property of our [pytorch implementation of faster r-cnn](https://github.com/jwyang/faster-rcnn.pytorch). Hence, it also has the following unique features: * **It is pure Pytorch code**. We convert all the numpy implementations to pytorch. * **It supports trainig batchsize > 1**. We revise all the layers, including dataloader, rpn, roi-pooling, etc., to train with multiple images at each iteration. * **It supports multiple GPUs**. We use a multiple GPU wrapper (nn.DataParallel here) to make it flexible to use one or more GPUs, as a merit of the above two features. * **It supports three pooling methods**. We integrate three pooling methods: roi pooing, roi align and roi crop. Besides, we convert them to support multi-image batch training. ## Benchmarking We benchmark our code thoroughly on three datasets: pascal voc, coco. Below are the results: 1). PASCAL VOC 2007 (Train/Test: 07trainval/07test, scale=600, ROI Align) model | GPUs | Batch Size | lr | lr_decay | max_epoch | Speed/epoch | Memory/GPU | mAP ---------|-----------|----|-----------|-----|-----|-------|--------|-------- Res-101   | 8 TitanX | 24| 1e-2 | 10 | 12 | 0.22 hr | 9688MB | 74.2 **Results on coco are on the way**.