# Diff-MTS **Repository Path**: zhangzrx1012/Diff-MTS ## Basic Information - **Project Name**: Diff-MTS - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-04-14 - **Last Updated**: 2025-04-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Diff-MTS: Temporal-Augmented Conditional Diffusion Model For Industrial Time Series Source codes for the paper "Diff-MTS: Temporal-Augmented Conditional Diffusion-Based AIGC for Industrial Time Series Toward the Large Model Era": [Diff-MTS](https://ieeexplore.ieee.org/document/10697287) [IEEE Transactions on Cybernetics] by Lei Ren, Haiteng Wang, Yuanjun Laili. Diff-MTS is a novel diffusion-based AIGC model tailored for industrial multivariate time series (MTS). It leverages temporal augmentation and adaptive diffusion techniques to generate high-quality synthetic data, addressing challenges in industrial data generation, including data scarcity, unstable training in GANs, and complex temporal dependencies. ![Example Image](weights/framework.png) ## Usage 1. Clone this repository: ```bash git clone https://github.com/your-username/diff-mts.git cd diff-mts 2. Install ```bash pip install -r requirements.txt 3. Training the Model Train the Diff-MTS model using the following command: ```bash python MainCondition.py --epoch 50 --dataset FD001 --lr 2e-3 --state all --model_name DiffUnet --T 500 --window_size 48 --sample_type ddpm --input_size 14 ``` ## Citation If you find this code helpful, please cite our paper: ``` @article{ren2024diff, title={Diff-MTS: Temporal-Augmented Conditional Diffusion-Based AIGC for Industrial Time Series Toward the Large Model Era}, author={Ren, Lei and Wang, Haiteng and Laili, Yuanjun}, journal={IEEE Transactions on Cybernetics}, year={2024}, publisher={IEEE} } ``` ``` Ren L, Wang H, Laili Y. Diff-MTS: Temporal-Augmented Conditional Diffusion-Based AIGC for Industrial Time Series Toward the Large Model Era[J]. IEEE Transactions on Cybernetics, 2024. ``` ## Acknowledgment Thanks for the [lucidrains/denoising-diffusion-pytorch](https://github.com/lucidrains/denoising-diffusion-pytorch) project for their contributions to this project.