# machine-failure-detection **Repository Path**: zhengkun110/machine-failure-detection ## Basic Information - **Project Name**: machine-failure-detection - **Description**: PCA and DBSCAN based anomaly and outlier detection method for time series data. - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2020-06-05 - **Last Updated**: 2021-07-13 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Predictive-Maintance-Model A requirement to implement a degradation model for an industrial machine and predict the failures beforehand. Malfunctioning of machines are captured here as anomalies and failures and its related data are captured here as outliers ### Dependencies - numpy - scikit-learn > 0.19.1 - pandas > 0.20.3 ### Dataset pickel files of the dataset: https://www.dropbox.com/s/jt0nsqsmqxm8wz4/pickle.rar?dl=0 ### Dataset structure (Time Synchronized) ![Screenshot](screenshots/dataset_structure.PNG) ### Architecture ![Screenshot](screenshots/current_work.PNG) ### Results of anomaly and outlier detection ![Screenshot](screenshots/results_1.PNG) ![Screenshot](screenshots/results_2.PNG) ### Degradation Model The degradation model for remaining useful life estimation can be found [here](https://github.com/LahiruJayasinghe/RUL-Net)