# BiGCN **Repository Path**: zhou8827/BiGCN ## Basic Information - **Project Name**: BiGCN - **Description**: Mi Zhang and Tieyun Qian,Convolution over Hierarchical Level Sentiment Analysis,EMNLP2020 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-12-06 - **Last Updated**: 2021-12-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # BiGCN Convolution over Hierarchical Syntactic and Lexical Graphs for Aspect Level Sentiment Analysis * Code and preprocessed dataset for [EMNLP 2020](https://2020.emnlp.org/papers/main) paper titled "[Convolution over Hierarchical Syntactic and Lexical Graphs for Aspect Level Sentiment Analysis](https://www.aclweb.org/anthology/2020.emnlp-main.286/)" ## Requirements * Python 3.7 * PyTorch 1.1.0 * SpaCy 2.0.18 * numpy 1.16.2 ## Usage * Download pretrained GloVe embeddings with this [link](http://nlp.stanford.edu/data/wordvecs/glove.840B.300d.zip) and extract `glove.840B.300d.txt` into `glove/`. * Train with command, optional arguments could be found in [train.py](/train.py) ```bash python train.py --dataset rest16 --vocab_dir datasets/semeval16/rest16_ --save True ``` ## Citation If you use the code in your paper, please kindly star this repo and cite our paper ``` @inproceedings{DBLP:conf/emnlp/ZhangQ20, author = {Mi Zhang and Tieyun Qian}, title = {Convolution over Hierarchical Syntactic and Lexical Graphs for Aspect Level Sentiment Analysis}, booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, {EMNLP} 2020, Online, November 16-20, 2020}, pages = {3540--3549}, year = {2020}, crossref = {DBLP:conf/emnlp/2020-1}, url = {https://www.aclweb.org/anthology/2020.emnlp-main.286/}, timestamp = {Thu, 19 Nov 2020 16:13:16 +0100}, biburl = {https://dblp.org/rec/conf/emnlp/ZhangQ20.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` ## Note * Code of this repo heavily relies on [ABSA-PyTorch](https://github.com/songyouwei/ABSA-PyTorch) and [ASGCN](https://github.com/GeneZC/ASGCN)