# DualGCN-ABSA **Repository Path**: zhou8827/DualGCN-ABSA ## Basic Information - **Project Name**: DualGCN-ABSA - **Description**: Dual Graph Convolutional Networks for Aspect-based Sentiment Analysis - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-12-06 - **Last Updated**: 2021-12-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # DualGCN Code and datasets of our paper "[Dual Graph Convolutional Networks for Aspect-based Sentiment Analysis](https://aclanthology.org/2021.acl-long.494/)" accepted by ACL 2021. ## Requirements - torch==1.4.0 - scikit-learn==0.23.2 - transformers==3.2.0 - cython==0.29.13 - nltk==3.5 To install requirements, run `pip install -r requirements.txt`. ## Preparation 1. Download and unzip GloVe vectors(`glove.840B.300d.zip`) from [https://nlp.stanford.edu/projects/glove/](https://nlp.stanford.edu/projects/glove/) and put it into `DualGCN/glove` directory. 2. Prepare vocabulary with: `sh DualGCN/build_vocab.sh` 3. Download the best model [best_parser.pt](LAL-Parser/best_model/readme.md) of [LAL-Parser](https://github.com/KhalilMrini/LAL-Parser). ## Training To train the DualGCN model, run: `sh DualGCN/run.sh` ## Credits The code and datasets in this repository are based on [ABSA-PyTorch](https://github.com/songyouwei/ABSA-PyTorch) and [CDT_ABSA](https://github.com/Guangzidetiaoyue/CDT_ABSA). ## Citation If you find this work useful, please cite as following. ``` @inproceedings{li-etal-2021-dual-graph, title = "Dual Graph Convolutional Networks for Aspect-based Sentiment Analysis", author = "Li, Ruifan and Chen, Hao and Feng, Fangxiang and Ma, Zhanyu and Wang, Xiaojie and Hovy, Eduard", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.494", } ```