# graph-based-nn **Repository Path**: zhouchena1/graph-based-nn ## Basic Information - **Project Name**: graph-based-nn - **Description**: Graph Convolutional Networks (GCNs) - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-07-31 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Graph-based Neural Networks This page is to summarize important materials about *graph-based neural networks* and *relational networks*. If I miss some recent works or anyone wants to recommend other references, please let me know. ## Background (You can find many materials for deep neural networks in other places. Here, I mainly cover materials about graphs.) - [Basic Graph Theory](http://data-science-training-xb.com/) by Xavier Bresson, See Lecture 3 and 16 - [Spectral Graph Theory](http://www.math.ucsd.edu/~fan/research/revised.html) by Fan Chung - [Graph Signal Processing GSP](https://arxiv.org/abs/1712.00468) by Ortega et al. - This paper provide an overview of core ideas in GSP and their connection to conventional digital signal processing. - Signal processing is required to understand the convolution in the spectral domain. - Keywords : graph theory, spectral graph theory, discrete Fourier transform (DFT) ## List of Related Works - **Early works using graph structure** - [A new model for learning in graph domains](http://ieeexplore.ieee.org/document/1555942/) - M. Gori, G. Monfardini, F. Scarselli, IJCNN 2005 - **First attempts to generalize neural networks to graphs** - [The graph neural network model](http://ieeexplore.ieee.org/document/4700287/) - F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, IEEE Trans. Neural Networks 2009 - These works optimized over the parameterized steady state of some diffusion process (or random walk) on the graph. - **Review paper** (*highly recommend*) - [Geometric deep learning: going beyond Euclidean data](https://arxiv.org/abs/1611.08097) - Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, Pierre Vandergheynst, IEEE Signal Processing Magazine 2017 - **First review paper of geometric deep learning** - **Graph Convolutional Networks (GCNs)** - [Spectral Networks and Locally Connected Networks on Graphs](https://arxiv.org/abs/1312.6203) - Joan Bruna, Wojciech Zaremba, Arthur Szlam, Yann LeCun, ICLR 2014 - **First formulation of CNNs on graphs in the spectral domain** - [Deep Convolutional Networks on Graph-Structured Data](https://arxiv.org/abs/1506.05163) - Mikael Henaff, Joan Bruna, Yann LeCun, 2015 - **Spatial localization of smooth filters in the frequency domain** - [Convolutional Networks on Graphs for Learning Molecular Fingerprints](http://papers.nips.cc/paper/5954-convolutional-networks-on-graphs-for-learning-molecular-fingerprints) - David Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alan Aspuru-Guzik, Ryan P. Adams, NIPS 2015 - [Gated Graph Sequence Neural Networks](https://arxiv.org/abs/1511.05493) - Yujia Li, Daniel Tarlow, Marc Brockschmidt, Richard Zemel, ICLR 2016 - **Sliding a filter on the vertices as conventional CNNs, not spectral filtering** - [Learning Convolutional Neural Networks for Graphs](https://arxiv.org/abs/1605.05273) - Mathias Niepert, Mohamed Ahmed, Konstantin Kutzkov, ICML 2016 - [Generalizing the Convolution Operator to extend CNNs to Irregular Domains](https://arxiv.org/abs/1606.01166) - Jean-Charles Vialatte, Vincent Gripon, Grégoire Mercier, arXiv 2016 - **Generalize CNNs to irregular domains using weight sharing and graph-based operators** - [Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering](https://arxiv.org/abs/1606.09375), [[PyTorch Code]](https://github.com/xbresson/graph_convnets_pytorch/blob/master/README.md) [[TF Code]](https://github.com/mdeff/cnn_graph) - Michaël Defferrard, Xavier Bresson, Pierre Vandergheynst, NIPS 2016 - **Spectral CNN with Chebychev polynomial filters (ChebNet)** - [Learning Shape Correspondence with Anisotropic Convolutional Neural Networks](https://arxiv.org/abs/1605.06437) - Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Michael M. Bronstein, NIPS 2016 - **Anisotropic CNN framework** - [Semi-Supervised Classification with Graph Convolutional Networks](https://arxiv.org/abs/1609.02907), [[Code]](https://github.com/tkipf/gcn), [[Blog]](http://tkipf.github.io/graph-convolutional-networks/) - Thomas N. Kipf, Max Welling, ICLR 2017 - **Graph Convolutional Networks (GCN) framework, a simplification of ChebNet** - [Geometric Deep Learning on Graphs and Manifolds using Mixture Model CNNs](https://arxiv.org/abs/1611.08402) - Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda, Michael M. Bronstein, CVPR 2017 - **MoNets** - [Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks](https://arxiv.org/abs/1704.06803), [[Code]](https://github.com/fmonti/mgcnn) - Federico Monti, Michael M. Bronstein, Xavier Bresson, NIPS 2017 - **Recommendation systems** - [CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral Filters](https://arxiv.org/abs/1705.07664) - Ron Levie, Federico Monti, Xavier Bresson, Michael M. Bronstein, arXiv 2017 - **Spectral CNN with complex rational filters (CayleyNet)** - [Residual Gated Graph ConvNets](https://arxiv.org/abs/1711.07553) - Xavier Bresson, Thomas Laurent, arXiv 2017 - **Relational Networks (RNs), Relational Reasoning, Interactions** - [Interaction networks for learning about objects, relations and physics](https://arxiv.org/abs/1612.00222) - Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, Koray Kavukcuoglu, NIPS 2016 - [A simple neural network module for relational reasoning](https://arxiv.org/abs/1706.01427), [[Deepmind Article]](https://deepmind.com/blog/neural-approach-relational-reasoning/), [[Code]](https://github.com/kimhc6028/relational-networks) - Adam Santoro, David Raposo, David G.T. Barrett, Mateusz Malinowski, Razvan Pascanu, Peter Battaglia, Timothy Lillicrap, arXiv 2017 - **Consider all possible pairs** - [Neural Message Passing for Quantum Chemistry](https://arxiv.org/abs/1704.01212) - Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, George E. Dahl, ICML 2017 - [Pointnet: Deep learning on point sets for 3d classification and segmentation](https://arxiv.org/abs/1612.00593) - Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas, CVPR2017 - [SchNet: A continuous-filter convolutional neural network for modeling quantum interactions](https://arxiv.org/abs/1706.08566) - Kristof T. Schütt, Pieter-Jan Kindermans, Huziel E. Sauceda, Stefan Chmiela, Alexandre Tkatchenko, Klaus-Robert Müller, NIPS 2017 - [VAIN: Attentional Multi-agent Predictive Modeling](http://papers.nips.cc/paper/6863-vain-attentional-multi-agent-predictive-modeling) - Yedid Hoshen, NIPS 2017 - [Modeling Relational Data with Graph Convolutional Networks](https://arxiv.org/abs/1703.06103) - Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, Max Welling, arXiv 2017 - [Graph Attention Networks](https://arxiv.org/abs/1710.10903), [[Code]](https://github.com/PetarV-/GAT) - Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, Yoshua Bengio, ICLR 2018 - **Graph Auto-Encoder (GAE)** - [Variational Graph Auto-Encoders](https://arxiv.org/abs/1611.07308), [[Code]](https://github.com/tkipf/gae) - Thomas N. Kipf, Max Welling, NIPS Workshop on Bayesian Deep Learning 2016 - Question: Why the adjacency matrix is reconstructed rather than the feature matrix? - [Modeling Relational Data with Graph Convolutional Networks](https://arxiv.org/abs/1703.06103) - Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, Max Welling, 2017 - [Graph Convolutional Matrix Completion](https://arxiv.org/abs/1706.02263) - Rianne van den Berg, Thomas N. Kipf, Max Welling, 2017 - **Other Applications using Graph-based Neural Networks** - [Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting ](https://arxiv.org/abs/1707.01926), [[Code]](https://github.com/liyaguang/DCRNN) - Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu, ICLR 2018 - [Automatically Inferring Data Quality for Spatiotemporal Forecasting](https://openreview.net/forum?id=ByJIWUnpW) - Sungyong Seo, Arash Mohegh, George Ban-Weiss, Yan Liu, ICLR 2018 ## Tutorials or Workshops - IPAM18 Workshop, [New Deep Learning Techniques](http://www.ipam.ucla.edu/programs/workshops/new-deep-learning-techniques/) - NIPS17 Tutorial, [Geometric Deep Learning on Graphs and Manifolds](https://nips.cc/Conferences/2017/Schedule?showEvent=8735) - CVPR17 Tutorial, [Geometric Deep Learning on Graphs](http://geometricdeeplearning.com/) ## Useful Resources - [Kipf's blog](http://tkipf.github.io/graph-convolutional-networks/) - [Geometric Deep Learning](http://geometricdeeplearning.com/) **highly recommended** - [CVPR17 tutorial, Geometric and Semantic 3D Reconstruction](https://www.dropbox.com/s/4l6m32tg9yecvow/CVPR%20GDL.pdf?dl=0), 240MB - [How do I generalize convolution of neural networks to graphs?](https://www.quora.com/How-do-I-generalize-convolution-of-neural-networks-to-graphs), Defferrard's answers in Quora - [PointNet](http://stanford.edu/~rqi/pointnet/) ## List of Researchers - [Thomas Kipf](http://tkipf.github.io/), University of Amsterdam - [Joan Bruna](http://cims.nyu.edu/~bruna/), NYU - [Michaël Defferrard](http://deff.ch/), EPFL - [Xavier Bresson](http://www.ntu.edu.sg/home/xbresson/index.html), NTU - [Federico Monti](https://www.ics.usi.ch/index.php/people-detail-page/268-federico-monti), Università della Svizzera Italiana - [Michael M. Bronstein](http://www.inf.usi.ch/bronstein/), Università della Svizzera Italiana