# image-segmentation **Repository Path**: zhyantao/image-segmentation ## Basic Information - **Project Name**: image-segmentation - **Description**: Mirror of https://github.com/zhyantao/image-segmentation - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: https://github.com/zhyantao/image-segmentation - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-12-31 - **Last Updated**: 2025-12-22 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Invascular OCT Image Segmentation [![Build Status](https://travis-ci.org/zhyantao/image-segmentation.svg?branch=master)](https://travis-ci.org/zhyantao/image-segmentation) ## Architecture [Architecture of U-net](./U-net.pdf) ## Dependencies - CentOS 7 - Python 3.6.5 - [Python-tkinter](https://centos.pkgs.org/7/centos-sclo-rh-x86_64/rh-python36-python-tkinter-3.6.3-3.el7.x86_64.rpm.html) - Deploy the environment. ```shell pip install -r requirements.txt -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com ``` ## Usage ### Data Preprocess - Download source codes, run command: `git clone https://github.com/zhyantao/image-segmentation.git` - Download [TrainData.tar.gz](https://zhyantao.lanzoui.com/igVZust1bti) to the directory **image-segmentation/**. - Change directory: `cd image-segmentation/src/` - Make original dataset, run command: `sh make_dataset.sh` - Data preprocess, run command: `python data_preprocess.py` - DIY your dataset, open `DIY_dataset.sh` and modify the number of images you wanna to train and valid, then run command: `sh DIY_dataset.sh` ### Training model ```shell python train.py ``` ### Test model ```shell python test.py ``` ### Visualizing the result ```shell python label_visualization.py ``` ## References 1. [U-Net: Convolutional Networks for Biomedical Image Segmentation](https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/) 2. [Deep-Learning Based, Automated Segmentation of Macular Edema in Optical Coherence Tomography](https://www.biorxiv.org/content/biorxiv/early/2017/05/09/135640.full.pdf) 3. [SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation](https://arxiv.org/pdf/1511.00561v2.pdf) 4. [Relationship Between a Systemic Inflammatory Marker, Plaque Inflammation, and Plaque Characteristics Determined by Intravascular Optical Coherence Tomography](https://www.ahajournals.org/doi/pdf/10.1161/ATVBAHA.107.145987) 5. [preddy5/segnet](https://github.com/preddy5/segnet) ## Results For more details, see [nohup.out](https://github.com/toooney/image-segmentation/blob/master/nohup.out) ## Visualizing Learning ```shell tensorboard --logdir=../logs/ ```