# similarity
**Repository Path**: zhzhenqin/similarity
## Basic Information
- **Project Name**: similarity
- **Description**: similarity:相似度计算工具包,java编写。用于词语、短语、句子、词法分析、情感分析、语义分析等相关的相似度计算。 来源:https://github.com/shibing624/similarity.git
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 19
- **Forks**: 4
- **Created**: 2020-11-12
- **Last Updated**: 2025-11-27
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# similarity
用于词语、短语、句子、词法分析、情感分析、语义分析等相关的相似度计算。
**similarity**是由一系列算法组成的Java版相似度计算工具包,目标是传播自然语言处理中相似度计算方法。**similarity**具备工具实用、性能高效、架构清晰、语料时新、可自定义的特点。
**similarity**提供下列功能:
> * 词语相似度计算
* 词林编码法相似度
* 汉语语义法相似度
* 知网词语相似度
* 字面编辑距离法
> * 短语相似度计算
* 简单短语相似度
> * 句子相似度计算
* 词性和词序结合法
* 编辑距离算法
* Gregor编辑距离法
* 优化编辑距离法
> * 文本相似度计算
* 余弦相似度
* 编辑距离算法
* 欧几里得距离
* Jaccard相似性系数
* Jaro距离
* Jaro–Winkler距离
* 曼哈顿距离
* SimHash + 汉明距离
* Sørensen–Dice系数
> * 词法分析
* xmnlp中文分词
* 分词词性标注
* 词频统计
> * 知网义原
* 义原树
> * 情感分析
* 正面倾向程度
* 负面倾向程度
* 情感倾向性
> * 近似词
* word2vec
在提供丰富功能的同时,**similarity**内部模块坚持低耦合、模型坚持惰性加载、词典坚持明文发布,使用方便,帮助用户训练自己的语料。
------
## demo
https://www.borntowin.cn/product/word_emb_sim
------
## Todo
文本相似性度量
- [x] 关键词匹配(TF-IDF、BM25)
- [x] 浅层语义匹配(WordEmbed隐语义模型,用word2vec或glove词向量直接累加构造的句向量)
- [ ] 深度语义匹配模型(DSSM、CLSM、DeepMatch、MatchingFeatures、ARC-II、DeepMind,具体依次参考下面的Reference)
欢迎大家贡献代码及思路,完善本项目
------
## jar包
- 离线jar包
[similarity-1.1.3-jar-with-dependencies.jar](./data/similarity-1.1.3-jar-with-dependencies.jar)
[similarity-1.1.3.jar](./data/similarity-1.1.3.jar)
下载其中一个,置于项目`Libraries`下,这样加入到项目依赖即可。
```
由于maven官方库包上传需要审核校对,着实耗时,现提供离线版jar包,方便使用。后续可以切换到maven官方库调用。
```
- Maven官方库(未上传,暂不可用)
```
io.github.shibing624
similarity
1.1.3
```
import
```
import org.xm.Similarity;
import org.xm.tendency.word.HownetWordTendency;
public class demo {
public static void main(String[] args) {
double result = Similarity.cilinSimilarity("电动车", "自行车");
System.out.println(result);
String word = "混蛋";
HownetWordTendency hownetWordTendency = new HownetWordTendency();
result = hownetWordTendency.getTendency(word);
System.out.println(word + " 词语情感趋势值:" + result);
}
}
```
## Usage
### word similarity
```
public static void main(String[] args) {
String word1 = "教师";
String word2 = "教授";
double cilinSimilarityResult = Similarity.cilinSimilarity(word1, word2);
double pinyinSimilarityResult = Similarity.pinyinSimilarity(word1, word2);
double conceptSimilarityResult = Similarity.conceptSimilarity(word1, word2);
double charBasedSimilarityResult = Similarity.charBasedSimilarity(word1, word2);
System.out.println(word1 + " vs " + word2 + " 词林相似度值:" + cilinSimilarityResult);
System.out.println(word1 + " vs " + word2 + " 拼音相似度值:" + pinyinSimilarityResult);
System.out.println(word1 + " vs " + word2 + " 概念相似度值:" + conceptSimilarityResult);
System.out.println(word1 + " vs " + word2 + " 字面相似度值:" + charBasedSimilarityResult);
}
```
demo code position: test/java/org.xm/WordSimilarityDemo.java
* result:

### phrase similarity
```
public static void main(String[] args) {
String phrase1 = "继续努力";
String phrase2 = "持续发展";
double result = Similarity.phraseSimilarity(phrase1, phrase2);
System.out.println(phrase1 + " vs " + phrase2 + " 短语相似度值:" + result);
}
```
demo code position: test/java/org.xm/PhraseSimilarityDemo.java
* result:

### sentence similarity
```
public static void main(String[] args) {
String sentence1 = "中国人爱吃鱼";
String sentence2 = "湖北佬最喜吃鱼";
double morphoSimilarityResult = Similarity.morphoSimilarity(sentence1, sentence2);
double editDistanceResult = Similarity.editDistanceSimilarity(sentence1, sentence2);
double standEditDistanceResult = Similarity.standardEditDistanceSimilarity(sentence1,sentence2);
double gregeorEditDistanceResult = Similarity.gregorEditDistanceSimilarity(sentence1,sentence2);
System.out.println(sentence1 + " vs " + sentence2 + " 词形词序句子相似度值:" + morphoSimilarityResult);
System.out.println(sentence1 + " vs " + sentence2 + " 优化的编辑距离句子相似度值:" + editDistanceResult);
System.out.println(sentence1 + " vs " + sentence2 + " 标准编辑距离句子相似度值:" + standEditDistanceResult);
System.out.println(sentence1 + " vs " + sentence2 + " gregeor编辑距离句子相似度值:" + gregeorEditDistanceResult);
}
```
demo code position: test/java/org.xm/SentenceSimilarityDemo.java
* result:

### text similarity
```
@Test
public void getSimilarityScore() throws Exception {
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 = "他是黑客";
TextSimilarity similarity = new CosineSimilarity();
double score1pk2 = similarity.getSimilarity(text1, text2);
double score1pk3 = similarity.getSimilarity(text1, text3);
double score2pk2 = similarity.getSimilarity(text2, text2);
double score2pk3 = similarity.getSimilarity(text2, text3);
double score3pk3 = similarity.getSimilarity(text3, text3);
System.out.println(text1 + " 和 " + text2 + " 的相似度分值:" + score1pk2);
System.out.println(text1 + " 和 " + text3 + " 的相似度分值:" + score1pk3);
System.out.println(text2 + " 和 " + text2 + " 的相似度分值:" + score2pk2);
System.out.println(text2 + " 和 " + text3 + " 的相似度分值:" + score2pk3);
System.out.println(text3 + " 和 " + text3 + " 的相似度分值:" + score3pk3);
}
```
demo code position: test/java/org.xm/similarity/text/CosineSimilarityTest.java
* result:

### word frequency statistics
demo code position: test/java/org.xm/tokenizer/WordFreqStatisticsTest.java
* result:

分词及词性标注内置调用[HanLP](https://github.com/hankcs/HanLP),也可以使用我们NLPchina的[ansj_seg](https://github.com/NLPchina/ansj_seg)分词工具。
### sentiment analysis based on words
```
@Test
public void getTendency() throws Exception {
HownetWordTendency hownet = new HownetWordTendency();
String word = "美好";
double sim = hownet.getTendency(word);
System.out.println(word + ":" + sim);
System.out.println("混蛋:" + hownet.getTendency("混蛋"));
}
```
demo code position: test/java/org.xm/tendency.word/HownetWordTendencyTest.java
* result:

本例是基于义原树的词语粒度情感极性分析,关于文本情感分析有[text-classifier](https://github.com/shibing624/text-classifier),利用深度神经网络模型、SVM分类算法实现的效果更好。
### homoionym(use word2vec)
```
@Test
public void testHomoionym() throws Exception {
List result = Word2vec.getHomoionym(RAW_CORPUS_SPLIT_MODEL, "武功", 10);
System.out.println("武功 近似词:" + result);
}
@Test
public void testHomoionymName() throws Exception {
String model = RAW_CORPUS_SPLIT_MODEL;
List result = Word2vec.getHomoionym(model, "乔帮主", 10);
System.out.println("乔帮主 近似词:" + result);
List result2 = Word2vec.getHomoionym(model, "阿朱", 10);
System.out.println("阿朱 近似词:" + result2);
List result3 = Word2vec.getHomoionym(model, "少林寺", 10);
System.out.println("少林寺 近似词:" + result3);
}
```
demo code position: test/java/org.xm/word2vec/Word2vecTest.java
* train:

* result:

训练词向量使用的是阿健实现的java版word2vec训练工具[Word2VEC_java](https://github.com/NLPchina/Word2VEC_java),训练语料是小说天龙八部,通过词向量实现得到近义词。
用户可以训练自定义语料,也可以用中文维基百科训练通用词向量。
## Reference
* [DSSM] Po-Sen Huang, et al., 2013, Learning Deep Structured Semantic Models for Web Search using Clickthrough Data
* [CLSM] Yelong Shen, et al, 2014, A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval
* [DeepMatch] Zhengdong Lu & Hang Li, 2013, A Deep Architecture for Matching Short Texts
* [MatchingFeatures] Zongcheng Ji, et al., 2014, An Information Retrieval Approach to Short Text Conversation
* [ARC-II] Baotian Hu, et al., 2015, Convolutional Neural Network Architectures for Matching Natural Language Sentences
* [DeepMind] Aliaksei Severyn, et al., 2015, Learning to Rank Short Text Pairs with Convolutional Deep Neural Networks