# siamfc-pytorch **Repository Path**: zk282263802/siamfc-pytorch ## Basic Information - **Project Name**: siamfc-pytorch - **Description**: A clean PyTorch implementation of SiamFC tracking/training, evaluated on 7 datasets. - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2020-07-19 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # SiamFC - PyTorch > Highlights of this update: > - Higher scores with more stable training performance. > - Faster training (~11 minutes to train one epoch on GOT-10k on a single GPU). > - Added MIT LICENSE. > - Organized code. > - Uploaded pretrained weights. ([Google Drive](https://drive.google.com/file/d/1UdxuBQ1qtisoWYFZxLgMFJ9mJtGVw6n4/view?usp=sharing) or [Baidu Yun](https://pan.baidu.com/s/1MTVXylPrSqpqmVD4iBwbpg) (password: wbek)) A clean PyTorch implementation of SiamFC tracker described in paper [Fully-Convolutional Siamese Networks for Object Tracking](https://www.robots.ox.ac.uk/~luca/siamese-fc.html). The code is evaluated on 7 tracking datasets ([OTB (2013/2015)](http://cvlab.hanyang.ac.kr/tracker_benchmark/index.html), [VOT (2018)](http://votchallenge.net), [DTB70](https://github.com/flyers/drone-tracking), [TColor128](http://www.dabi.temple.edu/~hbling/data/TColor-128/TColor-128.html), [NfS](http://ci2cv.net/nfs/index.html) and [UAV123](https://ivul.kaust.edu.sa/Pages/pub-benchmark-simulator-uav.aspx)), using the [GOT-10k toolkit](https://github.com/got-10k/toolkit). ## Performance (the scores are not updated yet) ### GOT-10k | Dataset | AO | SR0.50 | SR0.75 | |:------- |:-----:|:-----------------:|:-----------------:| | GOT-10k | 0.355 | 0.390 | 0.118 | The scores are comparable with state-of-the-art results on [GOT-10k leaderboard](http://got-10k.aitestunion.com/leaderboard). ### OTB / UAV123 / DTB70 / TColor128 / NfS | Dataset | Success Score | Precision Score | |:----------- |:----------------:|:----------------:| | OTB2013 | 0.589 | 0.781 | | OTB2015 | 0.578 | 0.765 | | UAV123 | 0.523 | 0.731 | | UAV20L | 0.423 | 0.572 | | DTB70 | 0.493 | 0.731 | | TColor128 | 0.510 | 0.691 | | NfS (30 fps) | - | - | | NfS (240 fps) | 0.520 | 0.624 | ### VOT2018 | Dataset | Accuracy | Robustness (unnormalized) | |:----------- |:-----------:|:-------------------------:| | VOT2018 | 0.502 | 37.25 | ## Installation Install Anaconda, then install dependencies: ```bash # install PyTorch >= 1.0 conda install pytorch torchvision cudatoolkit=9.0 -c pytorch # intall OpenCV using menpo channel (otherwise the read data could be inaccurate) conda install -c menpo opencv # install GOT-10k toolkit pip install got10k ``` [GOT-10k toolkit](https://github.com/got-10k/toolkit) is a visual tracking toolkit that implements evaluation metrics and tracking pipelines for 9 popular tracking datasets. ## Training the tracker 1. Setup the training dataset in `tools/train.py`. Default is the GOT-10k dataset located at `~/data/GOT-10k`. 2. Run: ``` python tools/train.py ``` ## Evaluate the tracker 1. Setup the tracking dataset in `tools/test.py`. Default is the OTB dataset located at `~/data/OTB`. 2. Setup the checkpoint path of your pretrained model. Default is `pretrained/siamfc_alexnet_e50.pth`. 3. Run: ``` python tools/test.py ``` ## Running the demo 1. Setup the sequence path in `tools/demo.py`. Default is `~/data/OTB/Crossing`. 2. Setup the checkpoint path of your pretrained model. Default is `pretrained/siamfc_alexnet_e50.pth`. 3. Run: ``` python tools/demo.py ```