# Rphenograph **Repository Path**: znengpan/Rphenograph ## Basic Information - **Project Name**: Rphenograph - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-01-08 - **Last Updated**: 2024-01-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README R implementation of the PhenoGraph algorithm =============== ### Rphenograph A simple R implementation of the [PhenoGraph](http://www.cell.com/cell/abstract/S0092-8674(15)00637-6) [1] algorithm, which is a clustering method designed for high-dimensional single-cell data analysis. It works by creating a graph ("network") representing phenotypic similarities between cells by calclating the Jaccard coefficient between nearest-neighbor sets, and then identifying communities using the well known [Louvain method](https://sites.google.com/site/findcommunities/) in this graph. ### Installation To install the latest version from the github repository, use: ``` r if(!require(devtools)){ install.packages("devtools") # If not already installed } devtools::install_github("JinmiaoChenLab/Rphenograph") ``` ### Usage After installing the package, use the following code to run a simple example (to install, see below). ``` r iris_unique <- unique(iris) # Remove duplicates data <- as.matrix(iris_unique[,1:4]) Rphenograph_out <- Rphenograph(data, k = 45) modularity(Rphenograph_out[[2]]) membership(Rphenograph_out[[2]]) iris_unique$phenograph_cluster <- factor(membership(Rphenograph_out[[2]])) ggplot(iris_unique, aes(x=Sepal.Length, y=Sepal.Width, col=Species, shape=phenograph_cluster)) + geom_point(size = 3)+theme_bw() ``` ![](Rhpenograph_iris_cluster.png) ### Reference [1] Levine JH, Simonds EF, Bendall SC, Davis KL, Amir ED, Tadmor MD, et al. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell. Elsevier Inc.; 2015; 1–14. doi:10.1016/j.cell.2015.05.047