# YOLOX
**Repository Path**: zw921525492/YOLOX
## Basic Information
- **Project Name**: YOLOX
- **Description**: No description available
- **Primary Language**: Python
- **License**: Apache-2.0
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2021-07-25
- **Last Updated**: 2021-08-16
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README

## Introduction
YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities.
For more details, please refer to our [report on Arxiv](https://arxiv.org/abs/2107.08430).
This repo is an implementation of PyTorch version YOLOX, there is also a [MegEngine implementation](https://github.com/MegEngine/YOLOX).
## Updates!!
* 【2021/08/05】 We release [MegEngine version YOLOX](https://github.com/MegEngine/YOLOX).
* 【2021/07/28】 We fix the fatal error of [memory leak](https://github.com/Megvii-BaseDetection/YOLOX/issues/103)
* 【2021/07/26】 We now support [MegEngine](https://github.com/Megvii-BaseDetection/YOLOX/tree/main/demo/MegEngine) deployment.
* 【2021/07/20】 We have released our technical report on [Arxiv](https://arxiv.org/abs/2107.08430).
## Comming soon
- [ ] YOLOX-P6 and larger model.
- [ ] Objects365 pretrain.
- [ ] Transformer modules.
- [ ] More features in need.
## Benchmark
#### Standard Models.
|Model |size |mAPtest
0.5:0.95 | Speed V100
(ms) | Params
(M) |FLOPs
(G)| weights |
| ------ |:---: | :---: |:---: |:---: | :---: | :----: |
|[YOLOX-s](./exps/default/yolox_s.py) |640 |39.6 |9.8 |9.0 | 26.8 | [onedrive](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EW62gmO2vnNNs5npxjzunVwB9p307qqygaCkXdTO88BLUg?e=NMTQYw)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_s.pth) |
|[YOLOX-m](./exps/default/yolox_m.py) |640 |46.4 |12.3 |25.3 |73.8| [onedrive](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/ERMTP7VFqrVBrXKMU7Vl4TcBQs0SUeCT7kvc-JdIbej4tQ?e=1MDo9y)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_m.pth) |
|[YOLOX-l](./exps/default/yolox_l.py) |640 |50.0 |14.5 |54.2| 155.6 | [onedrive](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EWA8w_IEOzBKvuueBqfaZh0BeoG5sVzR-XYbOJO4YlOkRw?e=wHWOBE)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_l.pth) |
|[YOLOX-x](./exps/default/yolox_x.py) |640 |**51.2** | 17.3 |99.1 |281.9 | [onedrive](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EdgVPHBziOVBtGAXHfeHI5kBza0q9yyueMGdT0wXZfI1rQ?e=tABO5u)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_x.pth) |
|[YOLOX-Darknet53](./exps/default/yolov3.py) |640 | 47.4 | 11.1 |63.7 | 185.3 | [onedrive](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EZ-MV1r_fMFPkPrNjvbJEMoBLOLAnXH-XKEB77w8LhXL6Q?e=mf6wOc)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_darknet53.pth) |
#### Light Models.
|Model |size |mAPval
0.5:0.95 | Params
(M) |FLOPs
(G)| weights |
| ------ |:---: | :---: |:---: |:---: | :---: |
|[YOLOX-Nano](./exps/default/nano.py) |416 |25.3 | 0.91 |1.08 | [onedrive](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EdcREey-krhLtdtSnxolxiUBjWMy6EFdiaO9bdOwZ5ygCQ?e=yQpdds)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_nano.pth) |
|[YOLOX-Tiny](./exps/default/yolox_tiny.py) |416 |32.8 | 5.06 |6.45 | [onedrive](https://megvii-my.sharepoint.cn/:u:/g/personal/gezheng_megvii_com/EbZuinX5X1dJmNy8nqSRegABWspKw3QpXxuO82YSoFN1oQ?e=Q7V7XE)/[github](https://github.com/Megvii-BaseDetection/storage/releases/download/0.0.1/yolox_tiny_32dot8.pth) |
## Quick Start
Installation
Step1. Install YOLOX.
```shell
git clone git@github.com:Megvii-BaseDetection/YOLOX.git
cd YOLOX
pip3 install -U pip && pip3 install -r requirements.txt
pip3 install -v -e . # or python3 setup.py develop
```
Step2. Install [apex](https://github.com/NVIDIA/apex).
```shell
# skip this step if you don't want to train model.
git clone https://github.com/NVIDIA/apex
cd apex
pip3 install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
```
Step3. Install [pycocotools](https://github.com/cocodataset/cocoapi).
```shell
pip3 install cython; pip3 install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
```
Demo
Step1. Download a pretrained model from the benchmark table.
Step2. Use either -n or -f to specify your detector's config. For example:
```shell
python tools/demo.py image -n yolox-s -c /path/to/your/yolox_s.pth --path assets/dog.jpg --conf 0.25 --nms 0.45 --tsize 640 --save_result --device [cpu/gpu]
```
or
```shell
python tools/demo.py image -f exps/default/yolox_s.py -c /path/to/your/yolox_s.pth --path assets/dog.jpg --conf 0.25 --nms 0.45 --tsize 640 --save_result --device [cpu/gpu]
```
Demo for video:
```shell
python tools/demo.py video -n yolox-s -c /path/to/your/yolox_s.pth --path /path/to/your/video --conf 0.25 --nms 0.45 --tsize 640 --save_result --device [cpu/gpu]
```
Reproduce our results on COCO
Step1. Prepare COCO dataset
```shell
cd
ln -s /path/to/your/COCO ./datasets/COCO
```
Step2. Reproduce our results on COCO by specifying -n:
```shell
python tools/train.py -n yolox-s -d 8 -b 64 --fp16 -o
yolox-m
yolox-l
yolox-x
```
* -d: number of gpu devices
* -b: total batch size, the recommended number for -b is num-gpu * 8
* --fp16: mixed precision training
When using -f, the above commands are equivalent to:
```shell
python tools/train.py -f exps/default/yolox_s.py -d 8 -b 64 --fp16 -o
exps/default/yolox_m.py
exps/default/yolox_l.py
exps/default/yolox_x.py
```
**Multi Machine Training**
We also support multi-nodes training. Just add the following args:
* --num\_machines: num of your total training nodes
* --machine\_rank: specify the rank of each node
Suppose you want to train YOLOX on 2 machines, and your master machines's IP is 123.123.123.123, use port 12312 and TCP.
On master machine, run
```shell
python tools/train.py -n yolox-s -b 128 --dist-url tcp://123.123.123.123:12312 --num-machines 2 --machine-rank 0
```
On the second machine, run
```shell
python tools/train.py -n yolox-s -b 128 --dist-url tcp://123.123.123.123:12312 --num-machines 2 --machine-rank 1
```
Evaluation
We support batch testing for fast evaluation:
```shell
python tools/eval.py -n yolox-s -c yolox_s.pth -b 64 -d 8 --conf 0.001 [--fp16] [--fuse]
yolox-m
yolox-l
yolox-x
```
* --fuse: fuse conv and bn
* -d: number of GPUs used for evaluation. DEFAULT: All GPUs available will be used.
* -b: total batch size across on all GPUs
To reproduce speed test, we use the following command:
```shell
python tools/eval.py -n yolox-s -c yolox_s.pth -b 1 -d 1 --conf 0.001 --fp16 --fuse
yolox-m
yolox-l
yolox-x
```
Tutorials
* [Training on custom data](docs/train_custom_data.md).
## Deployment
1. [MegEngine in C++ and Python](./demo/MegEngine)
2. [ONNX export and an ONNXRuntime](./demo/ONNXRuntime)
3. [TensorRT in C++ and Python](./demo/TensorRT)
4. [ncnn in C++ and Java](./demo/ncnn)
5. [OpenVINO in C++ and Python](./demo/OpenVINO)
## Third-party resources
* The ncnn android app with video support: [ncnn-android-yolox](https://github.com/FeiGeChuanShu/ncnn-android-yolox) from [FeiGeChuanShu](https://github.com/FeiGeChuanShu)
* YOLOX with Tengine support: [Tengine](https://github.com/OAID/Tengine/blob/tengine-lite/examples/tm_yolox.cpp) from [BUG1989](https://github.com/BUG1989)
* YOLOX + ROS2 Foxy: [YOLOX-ROS](https://github.com/Ar-Ray-code/YOLOX-ROS) from [Ar-Ray](https://github.com/Ar-Ray-code)
* YOLOX Deploy DeepStream: [YOLOX-deepstream](https://github.com/nanmi/YOLOX-deepstream) from [nanmi](https://github.com/nanmi)
* YOLOX ONNXRuntime C++ Demo: [lite.ai](https://github.com/DefTruth/lite.ai/blob/main/ort/cv/yolox.cpp) from [DefTruth](https://github.com/DefTruth)
* Converting darknet or yolov5 datasets to COCO format for YOLOX: [YOLO2COCO](https://github.com/RapidAI/YOLO2COCO) from [Daniel](https://github.com/znsoftm)
## Cite YOLOX
If you use YOLOX in your research, please cite our work by using the following BibTeX entry:
```latex
@article{yolox2021,
title={YOLOX: Exceeding YOLO Series in 2021},
author={Ge, Zheng and Liu, Songtao and Wang, Feng and Li, Zeming and Sun, Jian},
journal={arXiv preprint arXiv:2107.08430},
year={2021}
}
```