# KnowledgeGraphEmbedding **Repository Path**: zym19940917/KnowledgeGraphEmbedding ## Basic Information - **Project Name**: KnowledgeGraphEmbedding - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-12-25 - **Last Updated**: 2020-12-25 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space **Introduction** This is the PyTorch implementation of the [RotatE](https://openreview.net/forum?id=HkgEQnRqYQ) model for knowledge graph embedding (KGE). We provide a toolkit that gives state-of-the-art performance of several popular KGE models. The toolkit is quite efficient, which is able to train a large KGE model within a few hours on a single GPU. A faster multi-GPU implementation of RotatE and other KGE models is available in [GraphVite](https://github.com/DeepGraphLearning/graphvite). **Implemented features** Models: - [x] RotatE - [x] pRotatE - [x] TransE - [x] ComplEx - [x] DistMult Evaluation Metrics: - [x] MRR, MR, HITS@1, HITS@3, HITS@10 (filtered) - [x] AUC-PR (for Countries data sets) Loss Function: - [x] Uniform Negative Sampling - [x] Self-Adversarial Negative Sampling **Usage** Knowledge Graph Data: - *entities.dict*: a dictionary map entities to unique ids - *relations.dict*: a dictionary map relations to unique ids - *train.txt*: the KGE model is trained to fit this data set - *valid.txt*: create a blank file if no validation data is available - *test.txt*: the KGE model is evaluated on this data set **Train** For example, this command train a RotatE model on FB15k dataset with GPU 0. ``` CUDA_VISIBLE_DEVICES=0 python -u codes/run.py --do_train \ --cuda \ --do_valid \ --do_test \ --data_path data/FB15k \ --model RotatE \ -n 256 -b 1024 -d 1000 \ -g 24.0 -a 1.0 -adv \ -lr 0.0001 --max_steps 150000 \ -save models/RotatE_FB15k_0 --test_batch_size 16 -de ``` Check argparse configuration at codes/run.py for more arguments and more details. **Test** CUDA_VISIBLE_DEVICES=$GPU_DEVICE python -u $CODE_PATH/run.py --do_test --cuda -init $SAVE **Reproducing the best results** To reprocude the results in the ICLR 2019 paper [RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space](https://openreview.net/forum?id=HkgEQnRqYQ), you can run the bash commands in best_config.sh to get the best performance of RotatE, TransE, and ComplEx on five widely used datasets (FB15k, FB15k-237, wn18, wn18rr, Countries). The run.sh script provides an easy way to search hyper-parameters: bash run.sh train RotatE FB15k 0 0 1024 256 1000 24.0 1.0 0.0001 200000 16 -de **Speed** The KGE models usually take about half an hour to run 10000 steps on a single GeForce GTX 1080 Ti GPU with default configuration. And these models need different max_steps to converge on different data sets: | Dataset | FB15k | FB15k-237 | wn18 | wn18rr | Countries S* | |-------------|-------------|-------------|-------------|-------------|-------------| |MAX_STEPS| 150000 | 100000 | 80000 | 80000 | 40000 | |TIME| 9 h | 6 h | 4 h | 4 h | 2 h | **Results of the RotatE model** | Dataset | FB15k | FB15k-237 | wn18 | wn18rr | |-------------|-------------|-------------|-------------|-------------| | MRR | .797 ± .001 | .337 ± .001 | .949 ± .000 |.477 ± .001 | MR | 40 | 177 | 309 | 3340 | | HITS@1 | .746 | .241 | .944 | .428 | | HITS@3 | .830 | .375 | .952 | .492 | | HITS@10 | .884 | .533 | .959 | .571 | **Using the library** The python libarary is organized around 3 objects: - TrainDataset (dataloader.py): prepare data stream for training - TestDataSet (dataloader.py): prepare data stream for evluation - KGEModel (model.py): calculate triple score and provide train/test API The run.py file contains the main function, which parses arguments, reads data, initilize the model and provides the training loop. Add your own model to model.py like: ``` def TransE(self, head, relation, tail, mode): if mode == 'head-batch': score = head + (relation - tail) else: score = (head + relation) - tail score = self.gamma.item() - torch.norm(score, p=1, dim=2) return score ``` **Citation** If you use the codes, please cite the following [paper](https://openreview.net/forum?id=HkgEQnRqYQ): ``` @inproceedings{ sun2018rotate, title={RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space}, author={Zhiqing Sun and Zhi-Hong Deng and Jian-Yun Nie and Jian Tang}, booktitle={International Conference on Learning Representations}, year={2019}, url={https://openreview.net/forum?id=HkgEQnRqYQ}, } ```