# yolov8-face **Repository Path**: zzb32/yolov8-face ## Basic Information - **Project Name**: yolov8-face - **Description**: No description available - **Primary Language**: Unknown - **License**: GPL-3.0 - **Default Branch**: dev - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-05-25 - **Last Updated**: 2024-05-25 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README


Ultralytics CI YOLOv8 Citation Docker Pulls
Run on Gradient Open In Colab Open In Kaggle

[Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics), developed by [Ultralytics](https://ultralytics.com), is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection, image segmentation and image classification tasks.
## 🔥Update - ✅ **YOLOv8-n (person) trained on WIDERPedestrian [03.03]** - ✅ **YOLOv8-m (face) trained on WIDERFace [23.10]** - ✅ **YOLOv8-l (face) trained on WIDERFace [23.10]** ## Installation ``` shell # clone repo git clone https://github.com/akanametov/yolov8-face # pip install required packages pip install ultralytics # go to code folder cd yolov8-face ``` ## Trained models [`yolov8n-face.pt`](https://github.com/akanametov/yolov8-face/releases/download/v0.0.0/yolov8n-face.pt) [`yolov8m-face.pt`](https://github.com/akanametov/yolov8-face/releases/download/v0.0.0/yolov8m-face.pt) [`yolov8l-face.pt`](https://github.com/akanametov/yolov8-face/releases/download/v0.0.0/yolov8l-face.pt) [`yolov8n-person.pt`](https://github.com/akanametov/yolov8-face/releases/download/v0.0.0/yolov8n-person.pt) [`yolov8n-football.pt`](https://github.com/akanametov/yolov8-face/releases/download/v0.0.0/yolov8n-football.pt) [`yolov8m-football.pt`](https://github.com/akanametov/yolov8-face/releases/download/v0.0.0/yolov8m-football.pt) [`yolov8n-parking.pt`](https://github.com/akanametov/yolov8-face/releases/download/v0.0.0/yolov8n-parking.pt) [`yolov8m-parking.pt`](https://github.com/akanametov/yolov8-face/releases/download/v0.0.0/yolov8m-parking.pt) [`yolov8n-drone.pt`](https://github.com/akanametov/yolov8-face/releases/download/v0.0.0/yolov8n-drone.pt) [`yolov8m-drone.pt`](https://github.com/akanametov/yolov8-face/releases/download/v0.0.0/yolov8m-drone.pt) # YOLOv8-face ## Inference On image: ```shell yolo task=detect mode=predict model=yolov8n-face.pt conf=0.25 imgsz=1280 line_thickness=1 max_det=1000 source=examples/face.jpg ```
## Results PR curve:
Losses and mAP:
Confusion matrix:
## Training Data preparation * Download [dataset](http://shuoyang1213.me/WIDERFACE/): * Download pretrained [yolov8n.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) model. Single GPU training ``` shell # train model yolo task=detect \ mode=train \ model=yolov8n.pt \ data=datasets/data.yaml \ epochs=100 \ imgsz=640 ``` # YOLOv8-person ## Inference On image: ```shell yolo task=detect mode=predict model=yolov8n-face.pt conf=0.25 imgsz=1280 line_thickness=1 max_det=1000 source=examples/person.jpg ```
## Results PR curve:
Losses and mAP:
## Training Data preparation * Download [dataset](https://competitions.codalab.org/competitions/19118): * Download pretrained [yolov8n.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) model. Single GPU training ``` shell # train model yolo task=detect \ mode=train \ model=yolov8n.pt \ data=datasets/data.yaml \ epochs=100 \ imgsz=640 ``` # YOLOv8-football ## Inference On image: ```shell yolo task=detect mode=predict model=yolov8m-football.pt conf=0.25 imgsz=1280 line_thickness=1 source=examples/football.jpg ```
## Results PR curve:
Losses and mAP:
Confusion matrix:
## Training Data preparation * Download [dataset](https://universe.roboflow.com/roboflow-jvuqo/football-players-detection-3zvbc/dataset/2#): * Download pretrained [yolov8m.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) model. Single GPU training ``` shell # train model yolo task=detect \ mode=train \ model=yolov8m.pt \ data=datasets/data.yaml \ epochs=120 \ imgsz=960 ``` # YOLOv8-parking ## Inference On image: ```shell yolo task=detect mode=predict model=yolov8m-parking.pt conf=0.25 imgsz=1280 line_thickness=1 source=examples/parking.jpg ```
## Results PR curve:
Losses and mAP:
Confusion matrix:
## Training Data preparation * Download [dataset](https://universe.roboflow.com/brad-dwyer/pklot-1tros/dataset/4): * Download pretrained [yolov8m.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) model. Single GPU training ``` shell # train model yolo task=detect \ mode=train \ model=yolov8m.pt \ data=datasets/data.yaml \ epochs=10 \ batch=32 \ imgsz=640 ``` # YOLOv8-drone ## Inference On image: ```shell yolo task=detect mode=predict model=yolov8m-drone.pt conf=0.25 imgsz=1280 line_thickness=1 source=examples/drone.jpg ```
## Results PR curve:
Losses and mAP:
Confusion matrix:
## Training Data preparation * Download [dataset](https://universe.roboflow.com/projects-s5hzp/dronesegment/dataset/1): * Download pretrained [yolov8m.pt](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) model. Single GPU training ``` shell # train model yolo task=detect \ mode=train \ model=yolov8m.pt \ data=datasets/data.yaml \ epochs=100 \ imgsz=640 ``` ## Transfer learning [`yolov8n.pt`](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) [`yolov8m.pt`](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) ##
License
YOLOv8 is available under two different licenses: - **GPL-3.0 License**: See [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for details. - **Enterprise License**: Provides greater flexibility for commercial product development without the open-source requirements of GPL-3.0. Typical use cases are embedding Ultralytics software and AI models in commercial products and applications. Request an Enterprise License at [Ultralytics Licensing](https://ultralytics.com/license). ##
Contact
For YOLOv8 bugs and feature requests please visit [GitHub Issues](https://github.com/ultralytics/ultralytics/issues). For professional support please [Contact Us](https://ultralytics.com/contact).