# asr_server **Repository Path**: zzx_hub/asr_server ## Basic Information - **Project Name**: asr_server - **Description**: 语言识别Fast api 推理引擎 - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-08-01 - **Last Updated**: 2025-08-01 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ![Release](https://img.shields.io/github/v/release/ahmetoner/whisper-asr-webservice.svg) ![Docker Pulls](https://img.shields.io/docker/pulls/onerahmet/openai-whisper-asr-webservice.svg) ![Build](https://img.shields.io/github/actions/workflow/status/ahmetoner/whisper-asr-webservice/docker-publish.yml.svg) ![Licence](https://img.shields.io/github/license/ahmetoner/whisper-asr-webservice.svg) > 🎉 **Join our Discord Community!** Connect with other users, get help, and stay updated on the latest features: [https://discord.gg/4Q5YVrePzZ](https://discord.gg/4Q5YVrePzZ) # Whisper ASR Box Whisper ASR Box is a general-purpose speech recognition toolkit. Whisper Models are trained on a large dataset of diverse audio and is also a multitask model that can perform multilingual speech recognition as well as speech translation and language identification. ## Features Current release (v1.9.1) supports following whisper models: - [openai/whisper](https://github.com/openai/whisper)@[v20250625](https://github.com/openai/whisper/releases/tag/v20250625) - [SYSTRAN/faster-whisper](https://github.com/SYSTRAN/faster-whisper)@[v1.1.1](https://github.com/SYSTRAN/faster-whisper/releases/tag/v1.1.1) - [whisperX](https://github.com/m-bain/whisperX)@[v3.4.2](https://github.com/m-bain/whisperX/releases/tag/v3.4.2) ## Quick Usage ### CPU ```shell docker run -d -p 9000:9000 \ -e ASR_MODEL=base \ -e ASR_ENGINE=openai_whisper \ onerahmet/openai-whisper-asr-webservice:latest ``` ### GPU ```shell docker run -d --gpus all -p 9000:9000 \ -e ASR_MODEL=base \ -e ASR_ENGINE=openai_whisper \ onerahmet/openai-whisper-asr-webservice:latest-gpu ``` #### Cache To reduce container startup time by avoiding repeated downloads, you can persist the cache directory: ```shell docker run -d -p 9000:9000 \ -v $PWD/cache:/root/.cache/ \ onerahmet/openai-whisper-asr-webservice:latest ``` ## Key Features - Multiple ASR engines support (OpenAI Whisper, Faster Whisper, WhisperX) - Multiple output formats (text, JSON, VTT, SRT, TSV) - Word-level timestamps support - Voice activity detection (VAD) filtering - Speaker diarization (with WhisperX) - FFmpeg integration for broad audio/video format support - GPU acceleration support - Configurable model loading/unloading - REST API with Swagger documentation ## Environment Variables Key configuration options: - `ASR_ENGINE`: Engine selection (openai_whisper, faster_whisper, whisperx) - `ASR_MODEL`: Model selection (tiny, base, small, medium, large-v3, etc.) - `ASR_MODEL_PATH`: Custom path to store/load models - `ASR_DEVICE`: Device selection (cuda, cpu) - `MODEL_IDLE_TIMEOUT`: Timeout for model unloading ## Documentation For complete documentation, visit: [https://ahmetoner.github.io/whisper-asr-webservice](https://ahmetoner.github.io/whisper-asr-webservice) ## Development ```shell # Install poetry v2.X pip3 install poetry # Install dependencies for cpu poetry install --extras cpu # Install dependencies for cuda poetry install --extras cuda # Run service poetry run whisper-asr-webservice --host 0.0.0.0 --port 9000 ``` After starting the service, visit `http://localhost:9000` or `http://0.0.0.0:9000` in your browser to access the Swagger UI documentation and try out the API endpoints. ## Credits - This software uses libraries from the [FFmpeg](http://ffmpeg.org) project under the [LGPLv2.1](http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html)