# tinyFace **Repository Path**: zzzzzec/tiny-face ## Basic Information - **Project Name**: tinyFace - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-01-20 - **Last Updated**: 2022-01-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # tiny-faces-pytorch This is a PyTorch implementation of Peiyun Hu's [awesome tiny face detector](https://github.com/peiyunh/tiny). We use (and recommend) **Python 3.6+** for minimal pain when using this codebase (plus Python 3.6 has really cool features). **NOTE** Be sure to cite Peiyun's CVPR paper and this repo if you use this code! This code gives the following mAP results on the WIDER Face dataset: | Setting | mAP | |---------|-------| | easy | 0.902 | | medium | 0.892 | | hard | 0.797 | ## Getting Started - Clone this repository. - Download the WIDER Face dataset and annotations files to `data/WIDER`. - Install dependencies with `pip install -r requirements.txt`. Your data directory should look like this for WIDERFace ``` - data - WIDER - README.md - wider_face_split - WIDER_train - WIDER_val - WIDER_test ``` ## Pretrained Weights You can find the pretrained weights which get the above mAP results [here](https://drive.google.com/open?id=1V8c8xkMrQaCnd3MVChvJ2Ge-DUfXPHNu). ## Training Just type `make` at the repo root and you should be good to go! In case you wish to change some settings (such as data location), you can modify the `Makefile` which should be super easy to work with. ## Evaluation To run evaluation and generate the output files as per the WIDERFace specification, simply run `make evaluate`. The results will be stored in the `val_results` directory. You can then use the dataset's `eval_tools` to generate the mAP numbers (this needs Matlab/Octave). Similarly, to run the model on the test set, run `make test` to generate results in the `test_results` directory.