https://leetcode-cn.com/problems/bitwise-ors-of-subarrays/
我们有一个非负整数数组 A。
对于每个(连续的)子数组 B = [A[i], A[i+1], ..., A[j]] ( i <= j),我们对 B 中的每个元素进行按位或操作,获得结果 A[i] | A[i+1] | ... | A[j]。
返回可能结果的数量。 (多次出现的结果在最终答案中仅计算一次。)
示例 1:
输入:[0]
输出:1
解释:
只有一个可能的结果 0 。
示例 2:
输入:[1,1,2]
输出:3
解释:
可能的子数组为 [1],[1],[2],[1, 1],[1, 2],[1, 1, 2]。
产生的结果为 1,1,2,1,3,3 。
有三个唯一值,所以答案是 3 。
示例 3:
输入:[1,2,4]
输出:6
解释:
可能的结果是 1,2,3,4,6,以及 7 。
提示:
1 <= A.length <= 50000
0 <= A[i] <= 10^9
我们首先需要对问题进行分解,分解的思路和 【西法带你学算法】一次搞定前缀和 中提到的一样。这里简单介绍一下,如果还不明白的,建议看下那篇文章。
题目需要求的是所有子数组或运算后的结果的数目(去重)。一个朴素的思路是求出所有的子数组,然后对其求或,然后放到 hashset 中去重,最后返回 hashset 的大小即可。
我们可以使用固定两个端点的方式在 $O(n^2)$ 的时间计算出所有的子数组,并在 $O(n)$ 的时间求或,因此这种朴素的算法的时间复杂度是 $O(n^2 + n)$。
而由于子数组具有连续性,也就是说如果子数组 A[i:j] 的或是 OR(i,j)。那么子数组 A[i:j+1] 的或就是 OR(i,j) | A[j+1],也就是说,我们无需重复计算 OR(i, j)。基于这种思路,我们可以写出 $O(n)$ 的代码。
所有的子数组其实就是:
因此,我们可以边遍历边计算,并使用上面提到的技巧,用之前计算的结果推导下一步的结果。
算法(假设当前遍历到了索引 i):
为了防止迭代 pres 过程改变 pres 的值,我们可以用另外一个中间临时集合承载结果。
Python3 Code:
class Solution(object):
def subarrayBitwiseORs(self, A):
pres = set([0])
ans = set()
for a in A:
nxt = set()
for pre in pres:
nxt.add(a | pre)
nxt.add(a)
pres = nxt
ans |= nxt
return len(ans)
复杂度分析
令 n 为数组长度。
此题解由 力扣刷题插件 自动生成。
力扣的小伙伴可以关注我,这样就会第一时间收到我的动态啦~
以上就是本文的全部内容了。大家对此有何看法,欢迎给我留言,我有时间都会一一查看回答。更多算法套路可以访问我的 LeetCode 题解仓库:https://github.com/azl397985856/leetcode 。 目前已经 40K star 啦。大家也可以关注我的公众号《力扣加加》带你啃下算法这块硬骨头。
关注公众号力扣加加,努力用清晰直白的语言还原解题思路,并且有大量图解,手把手教你识别套路,高效刷题。
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。