1 Star 0 Fork 289

LockzhinerAI/PaddleDetection

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
eval.py 5.89 KB
一键复制 编辑 原始数据 按行查看 历史
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
# add python path of PaddleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)
# ignore warning log
import warnings
warnings.filterwarnings('ignore')
import paddle
from ppdet.core.workspace import create, load_config, merge_config
from ppdet.utils.check import check_gpu, check_npu, check_xpu, check_mlu, check_version, check_config
from ppdet.utils.cli import ArgsParser, merge_args
from ppdet.engine import Trainer, Trainer_ARSL, init_parallel_env
from ppdet.metrics.coco_utils import json_eval_results
from ppdet.slim import build_slim_model
from ppdet.utils.logger import setup_logger
logger = setup_logger('eval')
def parse_args():
parser = ArgsParser()
parser.add_argument(
"--output_eval",
default=None,
type=str,
help="Evaluation directory, default is current directory.")
parser.add_argument(
'--json_eval',
action='store_true',
default=False,
help='Whether to re eval with already exists bbox.json or mask.json')
parser.add_argument(
"--slim_config",
default=None,
type=str,
help="Configuration file of slim method.")
# TODO: bias should be unified
parser.add_argument(
"--bias",
action="store_true",
help="whether add bias or not while getting w and h")
parser.add_argument(
"--classwise",
action="store_true",
help="whether per-category AP and draw P-R Curve or not.")
parser.add_argument(
'--save_prediction_only',
action='store_true',
default=False,
help='Whether to save the evaluation results only')
parser.add_argument(
"--amp",
action='store_true',
default=False,
help="Enable auto mixed precision eval.")
# for smalldet slice_infer
parser.add_argument(
"--slice_infer",
action='store_true',
help="Whether to slice the image and merge the inference results for small object detection."
)
parser.add_argument(
'--slice_size',
nargs='+',
type=int,
default=[640, 640],
help="Height of the sliced image.")
parser.add_argument(
"--overlap_ratio",
nargs='+',
type=float,
default=[0.25, 0.25],
help="Overlap height ratio of the sliced image.")
parser.add_argument(
"--combine_method",
type=str,
default='nms',
help="Combine method of the sliced images' detection results, choose in ['nms', 'nmm', 'concat']."
)
parser.add_argument(
"--match_threshold",
type=float,
default=0.6,
help="Combine method matching threshold.")
parser.add_argument(
"--match_metric",
type=str,
default='ios',
help="Combine method matching metric, choose in ['iou', 'ios'].")
args = parser.parse_args()
return args
def run(FLAGS, cfg):
if FLAGS.json_eval:
logger.info(
"In json_eval mode, PaddleDetection will evaluate json files in "
"output_eval directly. And proposal.json, bbox.json and mask.json "
"will be detected by default.")
json_eval_results(
cfg.metric,
json_directory=FLAGS.output_eval,
dataset=create('EvalDataset')())
return
# init parallel environment if nranks > 1
init_parallel_env()
ssod_method = cfg.get('ssod_method', None)
if ssod_method == 'ARSL':
# build ARSL_trainer
trainer = Trainer_ARSL(cfg, mode='eval')
# load ARSL_weights
trainer.load_weights(cfg.weights, ARSL_eval=True)
else:
# build trainer
trainer = Trainer(cfg, mode='eval')
#load weights
trainer.load_weights(cfg.weights)
# training
if FLAGS.slice_infer:
trainer.evaluate_slice(
slice_size=FLAGS.slice_size,
overlap_ratio=FLAGS.overlap_ratio,
combine_method=FLAGS.combine_method,
match_threshold=FLAGS.match_threshold,
match_metric=FLAGS.match_metric)
else:
trainer.evaluate()
def main():
FLAGS = parse_args()
cfg = load_config(FLAGS.config)
merge_args(cfg, FLAGS)
merge_config(FLAGS.opt)
# disable npu in config by default
if 'use_npu' not in cfg:
cfg.use_npu = False
# disable xpu in config by default
if 'use_xpu' not in cfg:
cfg.use_xpu = False
if 'use_gpu' not in cfg:
cfg.use_gpu = False
# disable mlu in config by default
if 'use_mlu' not in cfg:
cfg.use_mlu = False
if cfg.use_gpu:
place = paddle.set_device('gpu')
elif cfg.use_npu:
place = paddle.set_device('npu')
elif cfg.use_xpu:
place = paddle.set_device('xpu')
elif cfg.use_mlu:
place = paddle.set_device('mlu')
else:
place = paddle.set_device('cpu')
if FLAGS.slim_config:
cfg = build_slim_model(cfg, FLAGS.slim_config, mode='eval')
check_config(cfg)
check_gpu(cfg.use_gpu)
check_npu(cfg.use_npu)
check_xpu(cfg.use_xpu)
check_mlu(cfg.use_mlu)
check_version()
run(FLAGS, cfg)
if __name__ == '__main__':
main()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/LockzhinerAI/PaddleDetection.git
git@gitee.com:LockzhinerAI/PaddleDetection.git
LockzhinerAI
PaddleDetection
PaddleDetection
LockzhinerVisionModule

搜索帮助