代码拉取完成,页面将自动刷新
同步操作将从 PaddlePaddle/PaddleDetection 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
# add python path of PaddleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)
# ignore warning log
import warnings
warnings.filterwarnings('ignore')
import paddle
from ppdet.core.workspace import load_config, merge_config
from ppdet.utils.check import check_gpu, check_version, check_config
from ppdet.utils.cli import ArgsParser
from ppdet.engine import Trainer
from ppdet.slim import build_slim_model
from ppdet.utils.logger import setup_logger
logger = setup_logger('post_quant')
def parse_args():
parser = ArgsParser()
parser.add_argument(
"--output_dir",
type=str,
default="output_inference",
help="Directory for storing the output model files.")
parser.add_argument(
"--slim_config",
default=None,
type=str,
help="Configuration file of slim method.")
args = parser.parse_args()
return args
def run(FLAGS, cfg):
# build detector
trainer = Trainer(cfg, mode='eval')
# load weights
if cfg.architecture in ['DeepSORT']:
if cfg.det_weights != 'None':
trainer.load_weights_sde(cfg.det_weights, cfg.reid_weights)
else:
trainer.load_weights_sde(None, cfg.reid_weights)
else:
trainer.load_weights(cfg.weights)
# post quant model
trainer.post_quant(FLAGS.output_dir)
def main():
FLAGS = parse_args()
cfg = load_config(FLAGS.config)
# TODO: to be refined in the future
if 'norm_type' in cfg and cfg['norm_type'] == 'sync_bn':
FLAGS.opt['norm_type'] = 'bn'
merge_config(FLAGS.opt)
if FLAGS.slim_config:
cfg = build_slim_model(cfg, FLAGS.slim_config, mode='test')
# FIXME: Temporarily solve the priority problem of FLAGS.opt
merge_config(FLAGS.opt)
check_config(cfg)
if 'use_gpu' not in cfg:
cfg.use_gpu = False
check_gpu(cfg.use_gpu)
check_version()
run(FLAGS, cfg)
if __name__ == '__main__':
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。