代码拉取完成,页面将自动刷新
from PyQt5.QtWidgets import *
import threading
import sys
from PyQt5.QtCore import *
from PyQt5.QtWidgets import QFileDialog, QMessageBox, QDockWidget, QListWidget
from PyQt5.QtGui import *
import face_recognition
import cv2
import os
from PIL import Image, ImageDraw, ImageFont
import numpy as np
# 窗口主类
class MainWindow(QTabWidget):
# 基本配置不动,然后只动第三个界面
def __init__(self):
# 初始化设置
super().__init__()
self.setWindowTitle('实时人脸识别系统')
self.resize(1100, 650)
self.setWindowIcon(QIcon("UI_images/faxian.png"))
# 要上传的图片路径
self.up_img_name = ""
# 要检测的图片名称
self.input_fname = ""
# 要检测的视频名称
self.source = ''
self.video_capture = cv2.VideoCapture(0)
# 初始化中止事件
self.stopEvent = threading.Event()
self.stopEvent.clear()
# 初始化人脸向量
self.known_names, self.known_encodings = self.initFaces()
# 加载lbp检测器
# 加载人脸识别模型
# 初始化界面
self.initUI()
self.set_down()
# 初始化数据库的人脸
def initFaces(self):
# 存储知道人名列表
known_names = []
# 存储知道的特征值
known_encodings = []
# 遍历存储人脸图片的文件夹
db_folder = "images/db_faces"
face_imgs = os.listdir(db_folder)
# 遍历图片,将人脸图片转化为向量
for face_img in face_imgs:
face_img_path = os.path.join(db_folder, face_img)
face_name = face_img.split(".")[0]
load_image = face_recognition.load_image_file(face_img_path) # 加载图片
image_face_encoding = face_recognition.face_encodings(load_image)[0] # 获得128维特征值
known_names.append(face_name) # 添加到人名的列表
known_encodings.append(image_face_encoding) # 添加到向量的列表
return known_names, known_encodings
# 初始化界面
def initUI(self):
# 设置字体
font_v = QFont('楷体', 14)
generally_font = QFont('楷体', 15)
# 图片检测
img_widget = QWidget()
img_layout = QVBoxLayout()
img_f_title = QLabel("上传人脸图像") # 设置标题
img_f_title.setAlignment(Qt.AlignCenter) # 设置标题位置为居中
img_f_title.setFont(QFont('楷体', 18)) # 设置标题字体大小
# todo 要上传的人脸图像
self.img_f_img = QLabel() # 设置第一个界面上要显示的图片
self.img_f_img.setPixmap(QPixmap("UI_images/zhuye.jpeg")) # 初始化要显示的图片
self.img_f_img.setAlignment(Qt.AlignCenter) # 设置图片居中
self.face_name = QLineEdit() # 设置当前图片对应的人名
img_up_btn = QPushButton("上传图片") # 设置上传图片的按钮
img_det_btn = QPushButton("开始上传") # 设置开始上传的按钮
img_up_btn.clicked.connect(self.up_img) # 联系到相关函数
img_det_btn.clicked.connect(self.up_db_img) # 连接到相关函数
# 设置组件的样式
img_up_btn.setFont(generally_font)
img_det_btn.setFont(generally_font)
img_up_btn.setStyleSheet("QPushButton{color:white}"
"QPushButton:hover{background-color: rgb(2,110,180);}"
"QPushButton{background-color:rgb(48,124,208)}"
"QPushButton{border:2px}"
"QPushButton{border-radius:5px}"
"QPushButton{padding:5px 5px}"
"QPushButton{margin:5px 5px}")
img_det_btn.setStyleSheet("QPushButton{color:white}"
"QPushButton:hover{background-color: rgb(2,110,180);}"
"QPushButton{background-color:rgb(48,124,208)}"
"QPushButton{border:2px}"
"QPushButton{border-radius:5px}"
"QPushButton{padding:5px 5px}"
"QPushButton{margin:5px 5px}")
# 将组件添加到布局上,然后设置主要的widget为当前的布局
img_layout.addWidget(img_f_title)
img_layout.addWidget(self.img_f_img)
img_layout.addWidget(self.face_name)
img_layout.addWidget(img_up_btn)
img_layout.addWidget(img_det_btn)
img_widget.setLayout(img_layout)
'''
*** 4. 视频识别界面 ***
'''
video_widget = QWidget()
video_layout = QVBoxLayout()
# 设置视频识别区的标题
self.video_title2 = QLabel("视频识别区")
self.video_title2.setFont(font_v)
self.video_title2.setAlignment(Qt.AlignCenter)
self.video_title2.setFont(font_v)
# 设置显示的界面
self.DisplayLabel = QLabel()
self.DisplayLabel.setPixmap(QPixmap(""))
self.btn_open_rsmtp = QPushButton("检测摄像头")
self.btn_open_rsmtp.setFont(font_v)
# 设置打开摄像头的按钮和样式
self.btn_open_rsmtp.setStyleSheet("QPushButton{color:white}"
"QPushButton:hover{background-color: rgb(2,110,180);}"
"QPushButton{background-color:rgb(48,124,208)}"
"QPushButton{border:2px}"
"QPushButton{border-radius:5px}"
"QPushButton{padding:5px 5px}"
"QPushButton{margin:5px 5px}")
# 设置选择文件的的按钮和样式
self.btn_open = QPushButton("开始识别(选择文件)")
self.btn_open.setFont(font_v)
self.btn_open.setStyleSheet("QPushButton{color:white}"
"QPushButton:hover{background-color: rgb(2,110,180);}"
"QPushButton{background-color:rgb(48,124,208)}"
"QPushButton{border:2px}"
"QPushButton{border-radius:5px}"
"QPushButton{padding:5px 5px}"
"QPushButton{margin:5px 5px}")
# 设置结束演示的按钮和样式
self.btn_close = QPushButton("结束检测")
self.btn_close.setFont(font_v)
self.btn_close.setStyleSheet("QPushButton{color:white}"
"QPushButton:hover{background-color: rgb(2,110,180);}"
"QPushButton{background-color:rgb(48,124,208)}"
"QPushButton{border:2px}"
"QPushButton{border-radius:5px}"
"QPushButton{padding:5px 5px}"
"QPushButton{margin:5px 5px}")
# 将组件添加到布局上
self.btn_open_rsmtp.clicked.connect(self.open_local)
self.btn_open.clicked.connect(self.open)
self.btn_close.clicked.connect(self.close)
video_layout.setAlignment(Qt.AlignCenter)
video_layout.addWidget(self.video_title2)
video_layout.addWidget(self.DisplayLabel)
self.DisplayLabel.setAlignment(Qt.AlignCenter)
video_layout.addWidget(self.btn_open_rsmtp)
video_layout.addWidget(self.btn_open)
video_layout.addWidget(self.btn_close)
video_widget.setLayout(video_layout)
'''
*** 5. 关于界面 ***
'''
about_widget = QWidget()
about_layout = QVBoxLayout()
about_title = QLabel('欢迎使用人脸检测系统\n\n') # todo 修改欢迎词语
about_title.setFont(QFont('楷体', 18))
about_title.setAlignment(Qt.AlignCenter)
about_img = QLabel()
about_img.setPixmap(QPixmap('UI_images/san.png'))
about_img.setAlignment(Qt.AlignCenter)
label_super = QLabel() # todo 更换作者信息
label_super.setText("<a href='https://wcowin.work/'>-->联系我</a>")
label_super.setFont(QFont('楷体', 16))
label_super.setOpenExternalLinks(True)
# label_super.setOpenExternalLinks(True)
label_super.setAlignment(Qt.AlignRight)
about_layout.addWidget(about_title)
about_layout.addStretch()
about_layout.addWidget(about_img)
about_layout.addStretch()
about_layout.addWidget(label_super)
about_widget.setLayout(about_layout)
# 分别添加子页面
self.addTab(img_widget, "上传人脸")
self.addTab(video_widget, '视频检测')
self.addTab(about_widget, '关于')
self.setTabIcon(0, QIcon('UI_images/图片.png'))
self.setTabIcon(1, QIcon('UI_images/图片.png'))
self.setTabIcon(1, QIcon('UI_images/直播.png'))
self.setTabIcon(2, QIcon('UI_images/logo_about.png'))
# 第一个界面的函数
def up_img(self):
# 打开文件选择框
openfile_name = QFileDialog.getOpenFileName(self, '选择文件', '', 'Image files(*.jpg , *.png)')
# 获取上传的文件名称
img_name = openfile_name[0]
if img_name == '':
pass
else:
# 上传之后显示并做归一化处理
src_img = cv2.imread(img_name)
src_img_height = src_img.shape[0]
src_img_width = src_img.shape[1]
target_img_height = 400
ratio = target_img_height / src_img_height
target_img_width = int(src_img_width * ratio)
# 将图片统一处理到高为400的图片,方便在界面上显示
target_img = cv2.resize(src_img, (target_img_width, target_img_height))
cv2.imwrite("UI_images/tmp/toup.jpg", target_img)
self.img_f_img.setPixmap(QPixmap("UI_images/tmp/toup.jpg"))
self.up_img_name = "UI_images/tmp/toup.jpg"
def up_db_img(self):
face_name = self.face_name.text()
# Convert the face name to a utf-8 encoded string
face_name = face_name.encode('utf-8').decode('utf-8')
if face_name == "":
QMessageBox.information(self, "不能为空", "请填写人脸姓名")
else:
load_image = face_recognition.load_image_file(self.up_img_name)
image_face_encoding = face_recognition.face_encodings(load_image)
encoding_length = len(image_face_encoding)
if encoding_length == 0:
QMessageBox.information(self, "请重新上传", "当前图片没有发现人脸")
elif encoding_length > 1:
QMessageBox.information(self, "请重新上传", "当前图片发现多张人脸")
else:
face_encoding = image_face_encoding[0]
img = cv2.imread(self.up_img_name)
img_path = face_name + '.jpg'
cv2.imwrite("images/db_faces/" + img_path, img)
self.known_names.append(face_name)
self.known_encodings.append(face_encoding)
QMessageBox.information(self, "上传成功", "数据已上传!")
'''
### 3. 视频识别相关功能 ###
'''
# 关闭事件 询问用户是否退出
def closeEvent(self, event):
reply = QMessageBox.question(self,
'退出',
"是否要退出程序?",
QMessageBox.Yes | QMessageBox.No,
QMessageBox.No)
if reply == QMessageBox.Yes:
self.close()
event.accept()
else:
event.ignore()
# 读取录像文件
def open(self):
# 选择录像文件进行读取
mp4_fileName, fileType = QFileDialog.getOpenFileName(self, 'Choose file', '', '*.mp4')
if mp4_fileName:
# 启动录像文件读取得线程并在画面上实时显示
self.source = mp4_fileName
self.video_capture = cv2.VideoCapture(self.source)
th = threading.Thread(target=self.display_video)
th.start()
def open_local(self):
# 选择录像文件进行读取
mp4_filename = 0
self.source = mp4_filename
# 读取摄像头进行实时得显示
self.video_capture = cv2.VideoCapture(self.source)
th = threading.Thread(target=self.display_video)
th.start()
# 退出进程
def close(self):
# 点击关闭按钮后重新初始化界面
self.stopEvent.set()
self.set_down()
#转换中文显示
def nameText(self,img, text, position, textColor=(255, 0, 0), textSize=30):
if (isinstance(img, np.ndarray)): # 判断是否OpenCV图片类型
img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
# 创建一个可以在给定图像上绘图的对象
face_draw = ImageDraw.Draw(img)
# 显示字体的格式
name_font= ImageFont.truetype("simsun.ttc", textSize, encoding="utf-8")
# 绘制人脸名称文本
face_draw.text(position, text, textColor, font=name_font)
# 转换回OpenCV格式
return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
# todo 执行人脸识别主进程
def display_video(self):
# 首先把打开按钮关闭
self.btn_open.setEnabled(False)
self.btn_close.setEnabled(True)
process_this_frame = True
while True:
ret, frame = self.video_capture.read() # 读取摄像头
# opencv的图像是BGR格式的,而我们需要是的RGB格式的,因此需要进行一个转换。
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # 将图像转化为rgb颜色通道
# gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 检查人脸 按照1.1倍放到 周围最小像素为5
# face_zone = self.face_detect.detectMultiScale(gray_frame, scaleFactor=2, minNeighbors=2) # maxSize = (55,55)
if process_this_frame:
face_locations = face_recognition.face_locations(rgb_frame) # 获得所有人脸位置
face_encodings = face_recognition.face_encodings(rgb_frame, face_locations) # 获得人脸特征值
face_names = [] # 存储出现在画面中人脸的名字
for face_encoding in face_encodings: # 和数据库人脸进行对比
# 如果当前人脸和数据库的人脸的相似度超过0.6,则认为人脸匹配
matches = face_recognition.compare_faces(self.known_encodings, face_encoding, tolerance=0.4)
if True in matches:
first_match_index = matches.index(True)
# 返回相似度最高的作为当前人脸的名称
name = self.known_names[first_match_index]
else:
name = "未知人脸"
face_names.append(name)
process_this_frame = not process_this_frame
# 将捕捉到的人脸显示出来
for (top, right, bottom, left), name in zip(face_locations, face_names):
cv2.rectangle(frame, (left, top), (right, bottom), (113,152,248), 2) # 画人脸矩形框
if name!='未知人脸':
name_list=list(name)
for i in range(0, len(name_list)):
if len(name_list)>=3 and i>0 and i<len(name_list)-1:
name_list[i]="*"
elif len(name_list)<3 and i>0 :
name_list[i]="*"
name=''.join(name_list)
frame=self.nameText(frame, name,(left+55, bottom+15),(255, 0, 0), 30)
# 保存图片并进行实时的显示
frame = frame
frame_height = frame.shape[0]
frame_width = frame.shape[1]
frame_scale = 500 / frame_height
frame_resize = cv2.resize(frame, (int(frame_width * frame_scale), int(frame_height * frame_scale)))
cv2.imwrite("images/tmp.jpg", frame_resize)
self.DisplayLabel.setPixmap(QPixmap("images/tmp.jpg"))
if cv2.waitKey(25) & self.stopEvent.is_set() == True:
self.stopEvent.clear()
self.DisplayLabel.clear()
self.btn_close.setEnabled(False)
self.btn_open.setEnabled(True)
self.set_down()
break
self.btn_open.setEnabled(True)
self.btn_close.setEnabled(False)
self.set_down()
# 初始化视频检测界面
def set_down(self):
self.video_capture.release()
cv2.destroyAllWindows()
self.DisplayLabel.setPixmap(QPixmap("UI_images/ae862.jpg"))
if __name__ == "__main__":
# 加载页面
app = QApplication(sys.argv)
mainWindow = MainWindow()
mainWindow.show()
sys.exit(app.exec_())
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。