代码拉取完成,页面将自动刷新
package ebpf
import (
"bufio"
"bytes"
"debug/elf"
"encoding/binary"
"errors"
"fmt"
"io"
"math"
"os"
"strings"
"github.com/cilium/ebpf/asm"
"github.com/cilium/ebpf/btf"
"github.com/cilium/ebpf/internal"
"github.com/cilium/ebpf/internal/sys"
"github.com/cilium/ebpf/internal/unix"
)
type kconfigMetaKey struct{}
type kconfigMeta struct {
Map *MapSpec
Offset uint32
}
type kfuncMetaKey struct{}
type kfuncMeta struct {
Binding elf.SymBind
Func *btf.Func
}
// elfCode is a convenience to reduce the amount of arguments that have to
// be passed around explicitly. You should treat its contents as immutable.
type elfCode struct {
*internal.SafeELFFile
sections map[elf.SectionIndex]*elfSection
license string
version uint32
btf *btf.Spec
extInfo *btf.ExtInfos
maps map[string]*MapSpec
kfuncs map[string]*btf.Func
kconfig *MapSpec
}
// LoadCollectionSpec parses an ELF file into a CollectionSpec.
func LoadCollectionSpec(file string) (*CollectionSpec, error) {
f, err := os.Open(file)
if err != nil {
return nil, err
}
defer f.Close()
spec, err := LoadCollectionSpecFromReader(f)
if err != nil {
return nil, fmt.Errorf("file %s: %w", file, err)
}
return spec, nil
}
// LoadCollectionSpecFromReader parses an ELF file into a CollectionSpec.
func LoadCollectionSpecFromReader(rd io.ReaderAt) (*CollectionSpec, error) {
f, err := internal.NewSafeELFFile(rd)
if err != nil {
return nil, err
}
// Checks if the ELF file is for BPF data.
// Old LLVM versions set e_machine to EM_NONE.
if f.File.Machine != unix.EM_NONE && f.File.Machine != elf.EM_BPF {
return nil, fmt.Errorf("unexpected machine type for BPF ELF: %s", f.File.Machine)
}
var (
licenseSection *elf.Section
versionSection *elf.Section
sections = make(map[elf.SectionIndex]*elfSection)
relSections = make(map[elf.SectionIndex]*elf.Section)
)
// This is the target of relocations generated by inline assembly.
sections[elf.SHN_UNDEF] = newElfSection(new(elf.Section), undefSection)
// Collect all the sections we're interested in. This includes relocations
// which we parse later.
//
// Keep the documentation at docs/ebpf/loading/elf-sections.md up-to-date.
for i, sec := range f.Sections {
idx := elf.SectionIndex(i)
switch {
case strings.HasPrefix(sec.Name, "license"):
licenseSection = sec
case strings.HasPrefix(sec.Name, "version"):
versionSection = sec
case strings.HasPrefix(sec.Name, "maps"):
sections[idx] = newElfSection(sec, mapSection)
case sec.Name == ".maps":
sections[idx] = newElfSection(sec, btfMapSection)
case sec.Name == ".bss" || sec.Name == ".data" || strings.HasPrefix(sec.Name, ".rodata"):
sections[idx] = newElfSection(sec, dataSection)
case sec.Type == elf.SHT_REL:
// Store relocations under the section index of the target
relSections[elf.SectionIndex(sec.Info)] = sec
case sec.Type == elf.SHT_PROGBITS && (sec.Flags&elf.SHF_EXECINSTR) != 0 && sec.Size > 0:
sections[idx] = newElfSection(sec, programSection)
}
}
license, err := loadLicense(licenseSection)
if err != nil {
return nil, fmt.Errorf("load license: %w", err)
}
version, err := loadVersion(versionSection, f.ByteOrder)
if err != nil {
return nil, fmt.Errorf("load version: %w", err)
}
btfSpec, btfExtInfo, err := btf.LoadSpecAndExtInfosFromReader(rd)
if err != nil && !errors.Is(err, btf.ErrNotFound) {
return nil, fmt.Errorf("load BTF: %w", err)
}
ec := &elfCode{
SafeELFFile: f,
sections: sections,
license: license,
version: version,
btf: btfSpec,
extInfo: btfExtInfo,
maps: make(map[string]*MapSpec),
kfuncs: make(map[string]*btf.Func),
}
symbols, err := f.Symbols()
if err != nil {
return nil, fmt.Errorf("load symbols: %v", err)
}
ec.assignSymbols(symbols)
if err := ec.loadRelocations(relSections, symbols); err != nil {
return nil, fmt.Errorf("load relocations: %w", err)
}
if err := ec.loadMaps(); err != nil {
return nil, fmt.Errorf("load maps: %w", err)
}
if err := ec.loadBTFMaps(); err != nil {
return nil, fmt.Errorf("load BTF maps: %w", err)
}
if err := ec.loadDataSections(); err != nil {
return nil, fmt.Errorf("load data sections: %w", err)
}
if err := ec.loadKconfigSection(); err != nil {
return nil, fmt.Errorf("load virtual .kconfig section: %w", err)
}
if err := ec.loadKsymsSection(); err != nil {
return nil, fmt.Errorf("load virtual .ksyms section: %w", err)
}
// Finally, collect programs and link them.
progs, err := ec.loadProgramSections()
if err != nil {
return nil, fmt.Errorf("load programs: %w", err)
}
return &CollectionSpec{ec.maps, progs, btfSpec, ec.ByteOrder}, nil
}
func loadLicense(sec *elf.Section) (string, error) {
if sec == nil {
return "", nil
}
data, err := sec.Data()
if err != nil {
return "", fmt.Errorf("section %s: %v", sec.Name, err)
}
return string(bytes.TrimRight(data, "\000")), nil
}
func loadVersion(sec *elf.Section, bo binary.ByteOrder) (uint32, error) {
if sec == nil {
return 0, nil
}
var version uint32
if err := binary.Read(sec.Open(), bo, &version); err != nil {
return 0, fmt.Errorf("section %s: %v", sec.Name, err)
}
return version, nil
}
type elfSectionKind int
const (
undefSection elfSectionKind = iota
mapSection
btfMapSection
programSection
dataSection
)
type elfSection struct {
*elf.Section
kind elfSectionKind
// Offset from the start of the section to a symbol
symbols map[uint64]elf.Symbol
// Offset from the start of the section to a relocation, which points at
// a symbol in another section.
relocations map[uint64]elf.Symbol
// The number of relocations pointing at this section.
references int
}
func newElfSection(section *elf.Section, kind elfSectionKind) *elfSection {
return &elfSection{
section,
kind,
make(map[uint64]elf.Symbol),
make(map[uint64]elf.Symbol),
0,
}
}
// assignSymbols takes a list of symbols and assigns them to their
// respective sections, indexed by name.
func (ec *elfCode) assignSymbols(symbols []elf.Symbol) {
for _, symbol := range symbols {
symType := elf.ST_TYPE(symbol.Info)
symSection := ec.sections[symbol.Section]
if symSection == nil {
continue
}
// Anonymous symbols only occur in debug sections which we don't process
// relocations for. Anonymous symbols are not referenced from other sections.
if symbol.Name == "" {
continue
}
// Older versions of LLVM don't tag symbols correctly, so keep
// all NOTYPE ones.
switch symSection.kind {
case mapSection, btfMapSection, dataSection:
if symType != elf.STT_NOTYPE && symType != elf.STT_OBJECT {
continue
}
case programSection:
if symType != elf.STT_NOTYPE && symType != elf.STT_FUNC {
continue
}
// LLVM emits LBB_ (Local Basic Block) symbols that seem to be jump
// targets within sections, but BPF has no use for them.
if symType == elf.STT_NOTYPE && elf.ST_BIND(symbol.Info) == elf.STB_LOCAL &&
strings.HasPrefix(symbol.Name, "LBB") {
continue
}
// Only collect symbols that occur in program/maps/data sections.
default:
continue
}
symSection.symbols[symbol.Value] = symbol
}
}
// loadRelocations iterates .rel* sections and extracts relocation entries for
// sections of interest. Makes sure relocations point at valid sections.
func (ec *elfCode) loadRelocations(relSections map[elf.SectionIndex]*elf.Section, symbols []elf.Symbol) error {
for idx, relSection := range relSections {
section := ec.sections[idx]
if section == nil {
continue
}
rels, err := ec.loadSectionRelocations(relSection, symbols)
if err != nil {
return fmt.Errorf("relocation for section %q: %w", section.Name, err)
}
for _, rel := range rels {
target := ec.sections[rel.Section]
if target == nil {
return fmt.Errorf("section %q: reference to %q in section %s: %w", section.Name, rel.Name, rel.Section, ErrNotSupported)
}
target.references++
}
section.relocations = rels
}
return nil
}
// loadProgramSections iterates ec's sections and emits a ProgramSpec
// for each function it finds.
//
// The resulting map is indexed by function name.
func (ec *elfCode) loadProgramSections() (map[string]*ProgramSpec, error) {
progs := make(map[string]*ProgramSpec)
// Generate a ProgramSpec for each function found in each program section.
var export []string
for _, sec := range ec.sections {
if sec.kind != programSection {
continue
}
if len(sec.symbols) == 0 {
return nil, fmt.Errorf("section %v: missing symbols", sec.Name)
}
funcs, err := ec.loadFunctions(sec)
if err != nil {
return nil, fmt.Errorf("section %v: %w", sec.Name, err)
}
progType, attachType, progFlags, attachTo := getProgType(sec.Name)
for name, insns := range funcs {
spec := &ProgramSpec{
Name: name,
Type: progType,
Flags: progFlags,
AttachType: attachType,
AttachTo: attachTo,
SectionName: sec.Name,
License: ec.license,
KernelVersion: ec.version,
Instructions: insns,
ByteOrder: ec.ByteOrder,
}
// Function names must be unique within a single ELF blob.
if progs[name] != nil {
return nil, fmt.Errorf("duplicate program name %s", name)
}
progs[name] = spec
if spec.SectionName != ".text" {
export = append(export, name)
}
}
}
flattenPrograms(progs, export)
// Hide programs (e.g. library functions) that were not explicitly emitted
// to an ELF section. These could be exposed in a separate CollectionSpec
// field later to allow them to be modified.
for n, p := range progs {
if p.SectionName == ".text" {
delete(progs, n)
}
}
return progs, nil
}
// loadFunctions extracts instruction streams from the given program section
// starting at each symbol in the section. The section's symbols must already
// be narrowed down to STT_NOTYPE (emitted by clang <8) or STT_FUNC.
//
// The resulting map is indexed by function name.
func (ec *elfCode) loadFunctions(section *elfSection) (map[string]asm.Instructions, error) {
r := bufio.NewReader(section.Open())
// Decode the section's instruction stream.
insns := make(asm.Instructions, 0, section.Size/asm.InstructionSize)
if err := insns.Unmarshal(r, ec.ByteOrder); err != nil {
return nil, fmt.Errorf("decoding instructions for section %s: %w", section.Name, err)
}
if len(insns) == 0 {
return nil, fmt.Errorf("no instructions found in section %s", section.Name)
}
iter := insns.Iterate()
for iter.Next() {
ins := iter.Ins
offset := iter.Offset.Bytes()
// Tag Symbol Instructions.
if sym, ok := section.symbols[offset]; ok {
*ins = ins.WithSymbol(sym.Name)
}
// Apply any relocations for the current instruction.
// If no relocation is present, resolve any section-relative function calls.
if rel, ok := section.relocations[offset]; ok {
if err := ec.relocateInstruction(ins, rel); err != nil {
return nil, fmt.Errorf("offset %d: relocating instruction: %w", offset, err)
}
} else {
if err := referenceRelativeJump(ins, offset, section.symbols); err != nil {
return nil, fmt.Errorf("offset %d: resolving relative jump: %w", offset, err)
}
}
}
if ec.extInfo != nil {
ec.extInfo.Assign(insns, section.Name)
}
return splitSymbols(insns)
}
// referenceRelativeJump turns a relative jump to another bpf subprogram within
// the same ELF section into a Reference Instruction.
//
// Up to LLVM 9, calls to subprograms within the same ELF section are sometimes
// encoded using relative jumps instead of relocation entries. These jumps go
// out of bounds of the current program, so their targets must be memoized
// before the section's instruction stream is split.
//
// The relative jump Constant is blinded to -1 and the target Symbol is set as
// the Instruction's Reference so it can be resolved by the linker.
func referenceRelativeJump(ins *asm.Instruction, offset uint64, symbols map[uint64]elf.Symbol) error {
if !ins.IsFunctionReference() || ins.Constant == -1 {
return nil
}
tgt := jumpTarget(offset, *ins)
sym := symbols[tgt].Name
if sym == "" {
return fmt.Errorf("no jump target found at offset %d", tgt)
}
*ins = ins.WithReference(sym)
ins.Constant = -1
return nil
}
// jumpTarget takes ins' offset within an instruction stream (in bytes)
// and returns its absolute jump destination (in bytes) within the
// instruction stream.
func jumpTarget(offset uint64, ins asm.Instruction) uint64 {
// A relative jump instruction describes the amount of raw BPF instructions
// to jump, convert the offset into bytes.
dest := ins.Constant * asm.InstructionSize
// The starting point of the jump is the end of the current instruction.
dest += int64(offset + asm.InstructionSize)
if dest < 0 {
return 0
}
return uint64(dest)
}
var errUnsupportedBinding = errors.New("unsupported binding")
func (ec *elfCode) relocateInstruction(ins *asm.Instruction, rel elf.Symbol) error {
var (
typ = elf.ST_TYPE(rel.Info)
bind = elf.ST_BIND(rel.Info)
name = rel.Name
)
target := ec.sections[rel.Section]
switch target.kind {
case mapSection, btfMapSection:
if bind == elf.STB_LOCAL {
return fmt.Errorf("possible erroneous static qualifier on map definition: found reference to %q", name)
}
if bind != elf.STB_GLOBAL {
return fmt.Errorf("map %q: %w: %s", name, errUnsupportedBinding, bind)
}
if typ != elf.STT_OBJECT && typ != elf.STT_NOTYPE {
// STT_NOTYPE is generated on clang < 8 which doesn't tag
// relocations appropriately.
return fmt.Errorf("map load: incorrect relocation type %v", typ)
}
ins.Src = asm.PseudoMapFD
case dataSection:
var offset uint32
switch typ {
case elf.STT_SECTION:
if bind != elf.STB_LOCAL {
return fmt.Errorf("direct load: %s: %w: %s", name, errUnsupportedBinding, bind)
}
// This is really a reference to a static symbol, which clang doesn't
// emit a symbol table entry for. Instead it encodes the offset in
// the instruction itself.
offset = uint32(uint64(ins.Constant))
case elf.STT_OBJECT:
// LLVM 9 emits OBJECT-LOCAL symbols for anonymous constants.
if bind != elf.STB_GLOBAL && bind != elf.STB_LOCAL {
return fmt.Errorf("direct load: %s: %w: %s", name, errUnsupportedBinding, bind)
}
offset = uint32(rel.Value)
case elf.STT_NOTYPE:
// LLVM 7 emits NOTYPE-LOCAL symbols for anonymous constants.
if bind != elf.STB_LOCAL {
return fmt.Errorf("direct load: %s: %w: %s", name, errUnsupportedBinding, bind)
}
offset = uint32(rel.Value)
default:
return fmt.Errorf("incorrect relocation type %v for direct map load", typ)
}
// We rely on using the name of the data section as the reference. It
// would be nicer to keep the real name in case of an STT_OBJECT, but
// it's not clear how to encode that into Instruction.
name = target.Name
// The kernel expects the offset in the second basic BPF instruction.
ins.Constant = int64(uint64(offset) << 32)
ins.Src = asm.PseudoMapValue
case programSection:
switch opCode := ins.OpCode; {
case opCode.JumpOp() == asm.Call:
if ins.Src != asm.PseudoCall {
return fmt.Errorf("call: %s: incorrect source register", name)
}
switch typ {
case elf.STT_NOTYPE, elf.STT_FUNC:
if bind != elf.STB_GLOBAL {
return fmt.Errorf("call: %s: %w: %s", name, errUnsupportedBinding, bind)
}
case elf.STT_SECTION:
if bind != elf.STB_LOCAL {
return fmt.Errorf("call: %s: %w: %s", name, errUnsupportedBinding, bind)
}
// The function we want to call is in the indicated section,
// at the offset encoded in the instruction itself. Reverse
// the calculation to find the real function we're looking for.
// A value of -1 references the first instruction in the section.
offset := int64(int32(ins.Constant)+1) * asm.InstructionSize
sym, ok := target.symbols[uint64(offset)]
if !ok {
return fmt.Errorf("call: no symbol at offset %d", offset)
}
name = sym.Name
ins.Constant = -1
default:
return fmt.Errorf("call: %s: invalid symbol type %s", name, typ)
}
case opCode.IsDWordLoad():
switch typ {
case elf.STT_FUNC:
if bind != elf.STB_GLOBAL {
return fmt.Errorf("load: %s: %w: %s", name, errUnsupportedBinding, bind)
}
case elf.STT_SECTION:
if bind != elf.STB_LOCAL {
return fmt.Errorf("load: %s: %w: %s", name, errUnsupportedBinding, bind)
}
// ins.Constant already contains the offset in bytes from the
// start of the section. This is different than a call to a
// static function.
default:
return fmt.Errorf("load: %s: invalid symbol type %s", name, typ)
}
sym, ok := target.symbols[uint64(ins.Constant)]
if !ok {
return fmt.Errorf("load: no symbol at offset %d", ins.Constant)
}
name = sym.Name
ins.Constant = -1
ins.Src = asm.PseudoFunc
default:
return fmt.Errorf("neither a call nor a load instruction: %v", ins)
}
// The Undefined section is used for 'virtual' symbols that aren't backed by
// an ELF section. This includes symbol references from inline asm, forward
// function declarations, as well as extern kfunc declarations using __ksym
// and extern kconfig variables declared using __kconfig.
case undefSection:
if bind != elf.STB_GLOBAL && bind != elf.STB_WEAK {
return fmt.Errorf("asm relocation: %s: %w: %s", name, errUnsupportedBinding, bind)
}
if typ != elf.STT_NOTYPE {
return fmt.Errorf("asm relocation: %s: unsupported type %s", name, typ)
}
kf := ec.kfuncs[name]
switch {
// If a Call / DWordLoad instruction is found and the datasec has a btf.Func with a Name
// that matches the symbol name we mark the instruction as a referencing a kfunc.
case kf != nil && ins.OpCode.JumpOp() == asm.Call:
ins.Metadata.Set(kfuncMetaKey{}, &kfuncMeta{
Func: kf,
Binding: bind,
})
ins.Src = asm.PseudoKfuncCall
ins.Constant = -1
case kf != nil && ins.OpCode.IsDWordLoad():
ins.Metadata.Set(kfuncMetaKey{}, &kfuncMeta{
Func: kf,
Binding: bind,
})
ins.Constant = 0
// If no kconfig map is found, this must be a symbol reference from inline
// asm (see testdata/loader.c:asm_relocation()) or a call to a forward
// function declaration (see testdata/fwd_decl.c). Don't interfere, These
// remain standard symbol references.
// extern __kconfig reads are represented as dword loads that need to be
// rewritten to pseudo map loads from .kconfig. If the map is present,
// require it to contain the symbol to disambiguate between inline asm
// relos and kconfigs.
case ec.kconfig != nil && ins.OpCode.IsDWordLoad():
if bind != elf.STB_GLOBAL {
return fmt.Errorf("asm relocation: %s: %w: %s", name, errUnsupportedBinding, bind)
}
for _, vsi := range ec.kconfig.Value.(*btf.Datasec).Vars {
if vsi.Type.(*btf.Var).Name != rel.Name {
continue
}
ins.Src = asm.PseudoMapValue
ins.Metadata.Set(kconfigMetaKey{}, &kconfigMeta{ec.kconfig, vsi.Offset})
return nil
}
return fmt.Errorf("kconfig %s not found in .kconfig", rel.Name)
}
default:
return fmt.Errorf("relocation to %q: %w", target.Name, ErrNotSupported)
}
*ins = ins.WithReference(name)
return nil
}
func (ec *elfCode) loadMaps() error {
for _, sec := range ec.sections {
if sec.kind != mapSection {
continue
}
nSym := len(sec.symbols)
if nSym == 0 {
return fmt.Errorf("section %v: no symbols", sec.Name)
}
if sec.Size%uint64(nSym) != 0 {
return fmt.Errorf("section %v: map descriptors are not of equal size", sec.Name)
}
var (
r = bufio.NewReader(sec.Open())
size = sec.Size / uint64(nSym)
)
for i, offset := 0, uint64(0); i < nSym; i, offset = i+1, offset+size {
mapSym, ok := sec.symbols[offset]
if !ok {
return fmt.Errorf("section %s: missing symbol for map at offset %d", sec.Name, offset)
}
mapName := mapSym.Name
if ec.maps[mapName] != nil {
return fmt.Errorf("section %v: map %v already exists", sec.Name, mapSym)
}
lr := io.LimitReader(r, int64(size))
spec := MapSpec{
Name: SanitizeName(mapName, -1),
}
switch {
case binary.Read(lr, ec.ByteOrder, &spec.Type) != nil:
return fmt.Errorf("map %s: missing type", mapName)
case binary.Read(lr, ec.ByteOrder, &spec.KeySize) != nil:
return fmt.Errorf("map %s: missing key size", mapName)
case binary.Read(lr, ec.ByteOrder, &spec.ValueSize) != nil:
return fmt.Errorf("map %s: missing value size", mapName)
case binary.Read(lr, ec.ByteOrder, &spec.MaxEntries) != nil:
return fmt.Errorf("map %s: missing max entries", mapName)
case binary.Read(lr, ec.ByteOrder, &spec.Flags) != nil:
return fmt.Errorf("map %s: missing flags", mapName)
}
extra, err := io.ReadAll(lr)
if err != nil {
return fmt.Errorf("map %s: reading map tail: %w", mapName, err)
}
if len(extra) > 0 {
spec.Extra = bytes.NewReader(extra)
}
ec.maps[mapName] = &spec
}
}
return nil
}
// loadBTFMaps iterates over all ELF sections marked as BTF map sections
// (like .maps) and parses them into MapSpecs. Dump the .maps section and
// any relocations with `readelf -x .maps -r <elf_file>`.
func (ec *elfCode) loadBTFMaps() error {
for _, sec := range ec.sections {
if sec.kind != btfMapSection {
continue
}
if ec.btf == nil {
return fmt.Errorf("missing BTF")
}
// Each section must appear as a DataSec in the ELF's BTF blob.
var ds *btf.Datasec
if err := ec.btf.TypeByName(sec.Name, &ds); err != nil {
return fmt.Errorf("cannot find section '%s' in BTF: %w", sec.Name, err)
}
// Open a Reader to the ELF's raw section bytes so we can assert that all
// of them are zero on a per-map (per-Var) basis. For now, the section's
// sole purpose is to receive relocations, so all must be zero.
rs := sec.Open()
for _, vs := range ds.Vars {
// BPF maps are declared as and assigned to global variables,
// so iterate over each Var in the DataSec and validate their types.
v, ok := vs.Type.(*btf.Var)
if !ok {
return fmt.Errorf("section %v: unexpected type %s", sec.Name, vs.Type)
}
name := string(v.Name)
// The BTF metadata for each Var contains the full length of the map
// declaration, so read the corresponding amount of bytes from the ELF.
// This way, we can pinpoint which map declaration contains unexpected
// (and therefore unsupported) data.
_, err := io.Copy(internal.DiscardZeroes{}, io.LimitReader(rs, int64(vs.Size)))
if err != nil {
return fmt.Errorf("section %v: map %s: initializing BTF map definitions: %w", sec.Name, name, internal.ErrNotSupported)
}
if ec.maps[name] != nil {
return fmt.Errorf("section %v: map %s already exists", sec.Name, name)
}
// Each Var representing a BTF map definition contains a Struct.
mapStruct, ok := btf.UnderlyingType(v.Type).(*btf.Struct)
if !ok {
return fmt.Errorf("expected struct, got %s", v.Type)
}
mapSpec, err := mapSpecFromBTF(sec, &vs, mapStruct, ec.btf, name, false)
if err != nil {
return fmt.Errorf("map %v: %w", name, err)
}
ec.maps[name] = mapSpec
}
// Drain the ELF section reader to make sure all bytes are accounted for
// with BTF metadata.
i, err := io.Copy(io.Discard, rs)
if err != nil {
return fmt.Errorf("section %v: unexpected error reading remainder of ELF section: %w", sec.Name, err)
}
if i > 0 {
return fmt.Errorf("section %v: %d unexpected remaining bytes in ELF section, invalid BTF?", sec.Name, i)
}
}
return nil
}
// mapSpecFromBTF produces a MapSpec based on a btf.Struct def representing
// a BTF map definition. The name and spec arguments will be copied to the
// resulting MapSpec, and inner must be true on any recursive invocations.
func mapSpecFromBTF(es *elfSection, vs *btf.VarSecinfo, def *btf.Struct, spec *btf.Spec, name string, inner bool) (*MapSpec, error) {
var (
key, value btf.Type
keySize, valueSize uint32
mapType MapType
flags, maxEntries uint32
pinType PinType
innerMapSpec *MapSpec
contents []MapKV
err error
)
for i, member := range def.Members {
switch member.Name {
case "type":
mt, err := uintFromBTF(member.Type)
if err != nil {
return nil, fmt.Errorf("can't get type: %w", err)
}
mapType = MapType(mt)
case "map_flags":
flags, err = uintFromBTF(member.Type)
if err != nil {
return nil, fmt.Errorf("can't get BTF map flags: %w", err)
}
case "max_entries":
maxEntries, err = uintFromBTF(member.Type)
if err != nil {
return nil, fmt.Errorf("can't get BTF map max entries: %w", err)
}
case "key":
if keySize != 0 {
return nil, errors.New("both key and key_size given")
}
pk, ok := member.Type.(*btf.Pointer)
if !ok {
return nil, fmt.Errorf("key type is not a pointer: %T", member.Type)
}
key = pk.Target
size, err := btf.Sizeof(pk.Target)
if err != nil {
return nil, fmt.Errorf("can't get size of BTF key: %w", err)
}
keySize = uint32(size)
case "value":
if valueSize != 0 {
return nil, errors.New("both value and value_size given")
}
vk, ok := member.Type.(*btf.Pointer)
if !ok {
return nil, fmt.Errorf("value type is not a pointer: %T", member.Type)
}
value = vk.Target
size, err := btf.Sizeof(vk.Target)
if err != nil {
return nil, fmt.Errorf("can't get size of BTF value: %w", err)
}
valueSize = uint32(size)
case "key_size":
// Key needs to be nil and keySize needs to be 0 for key_size to be
// considered a valid member.
if key != nil || keySize != 0 {
return nil, errors.New("both key and key_size given")
}
keySize, err = uintFromBTF(member.Type)
if err != nil {
return nil, fmt.Errorf("can't get BTF key size: %w", err)
}
case "value_size":
// Value needs to be nil and valueSize needs to be 0 for value_size to be
// considered a valid member.
if value != nil || valueSize != 0 {
return nil, errors.New("both value and value_size given")
}
valueSize, err = uintFromBTF(member.Type)
if err != nil {
return nil, fmt.Errorf("can't get BTF value size: %w", err)
}
case "pinning":
if inner {
return nil, errors.New("inner maps can't be pinned")
}
pinning, err := uintFromBTF(member.Type)
if err != nil {
return nil, fmt.Errorf("can't get pinning: %w", err)
}
pinType = PinType(pinning)
case "values":
// The 'values' field in BTF map definitions is used for declaring map
// value types that are references to other BPF objects, like other maps
// or programs. It is always expected to be an array of pointers.
if i != len(def.Members)-1 {
return nil, errors.New("'values' must be the last member in a BTF map definition")
}
if valueSize != 0 && valueSize != 4 {
return nil, errors.New("value_size must be 0 or 4")
}
valueSize = 4
valueType, err := resolveBTFArrayMacro(member.Type)
if err != nil {
return nil, fmt.Errorf("can't resolve type of member 'values': %w", err)
}
switch t := valueType.(type) {
case *btf.Struct:
// The values member pointing to an array of structs means we're expecting
// a map-in-map declaration.
if mapType != ArrayOfMaps && mapType != HashOfMaps {
return nil, errors.New("outer map needs to be an array or a hash of maps")
}
if inner {
return nil, fmt.Errorf("nested inner maps are not supported")
}
// This inner map spec is used as a map template, but it needs to be
// created as a traditional map before it can be used to do so.
// libbpf names the inner map template '<outer_name>.inner', but we
// opted for _inner to simplify validation logic. (dots only supported
// on kernels 5.2 and up)
// Pass the BTF spec from the parent object, since both parent and
// child must be created from the same BTF blob (on kernels that support BTF).
innerMapSpec, err = mapSpecFromBTF(es, vs, t, spec, name+"_inner", true)
if err != nil {
return nil, fmt.Errorf("can't parse BTF map definition of inner map: %w", err)
}
case *btf.FuncProto:
// The values member contains an array of function pointers, meaning an
// autopopulated PROG_ARRAY.
if mapType != ProgramArray {
return nil, errors.New("map needs to be a program array")
}
default:
return nil, fmt.Errorf("unsupported value type %q in 'values' field", t)
}
contents, err = resolveBTFValuesContents(es, vs, member)
if err != nil {
return nil, fmt.Errorf("resolving values contents: %w", err)
}
case "map_extra":
return nil, fmt.Errorf("BTF map definition: field %s: %w", member.Name, ErrNotSupported)
default:
return nil, fmt.Errorf("unrecognized field %s in BTF map definition", member.Name)
}
}
return &MapSpec{
Name: SanitizeName(name, -1),
Type: MapType(mapType),
KeySize: keySize,
ValueSize: valueSize,
MaxEntries: maxEntries,
Flags: flags,
Key: key,
Value: value,
Pinning: pinType,
InnerMap: innerMapSpec,
Contents: contents,
}, nil
}
// uintFromBTF resolves the __uint macro, which is a pointer to a sized
// array, e.g. for int (*foo)[10], this function will return 10.
func uintFromBTF(typ btf.Type) (uint32, error) {
ptr, ok := typ.(*btf.Pointer)
if !ok {
return 0, fmt.Errorf("not a pointer: %v", typ)
}
arr, ok := ptr.Target.(*btf.Array)
if !ok {
return 0, fmt.Errorf("not a pointer to array: %v", typ)
}
return arr.Nelems, nil
}
// resolveBTFArrayMacro resolves the __array macro, which declares an array
// of pointers to a given type. This function returns the target Type of
// the pointers in the array.
func resolveBTFArrayMacro(typ btf.Type) (btf.Type, error) {
arr, ok := typ.(*btf.Array)
if !ok {
return nil, fmt.Errorf("not an array: %v", typ)
}
ptr, ok := arr.Type.(*btf.Pointer)
if !ok {
return nil, fmt.Errorf("not an array of pointers: %v", typ)
}
return ptr.Target, nil
}
// resolveBTFValuesContents resolves relocations into ELF sections belonging
// to btf.VarSecinfo's. This can be used on the 'values' member in BTF map
// definitions to extract static declarations of map contents.
func resolveBTFValuesContents(es *elfSection, vs *btf.VarSecinfo, member btf.Member) ([]MapKV, error) {
// The elements of a .values pointer array are not encoded in BTF.
// Instead, relocations are generated into each array index.
// However, it's possible to leave certain array indices empty, so all
// indices' offsets need to be checked for emitted relocations.
// The offset of the 'values' member within the _struct_ (in bits)
// is the starting point of the array. Convert to bytes. Add VarSecinfo
// offset to get the absolute position in the ELF blob.
start := member.Offset.Bytes() + vs.Offset
// 'values' is encoded in BTF as a zero (variable) length struct
// member, and its contents run until the end of the VarSecinfo.
// Add VarSecinfo offset to get the absolute position in the ELF blob.
end := vs.Size + vs.Offset
// The size of an address in this section. This determines the width of
// an index in the array.
align := uint32(es.SectionHeader.Addralign)
// Check if variable-length section is aligned.
if (end-start)%align != 0 {
return nil, errors.New("unaligned static values section")
}
elems := (end - start) / align
if elems == 0 {
return nil, nil
}
contents := make([]MapKV, 0, elems)
// k is the array index, off is its corresponding ELF section offset.
for k, off := uint32(0), start; k < elems; k, off = k+1, off+align {
r, ok := es.relocations[uint64(off)]
if !ok {
continue
}
// Relocation exists for the current offset in the ELF section.
// Emit a value stub based on the type of relocation to be replaced by
// a real fd later in the pipeline before populating the map.
// Map keys are encoded in MapKV entries, so empty array indices are
// skipped here.
switch t := elf.ST_TYPE(r.Info); t {
case elf.STT_FUNC:
contents = append(contents, MapKV{uint32(k), r.Name})
case elf.STT_OBJECT:
contents = append(contents, MapKV{uint32(k), r.Name})
default:
return nil, fmt.Errorf("unknown relocation type %v for symbol %s", t, r.Name)
}
}
return contents, nil
}
func (ec *elfCode) loadDataSections() error {
for _, sec := range ec.sections {
if sec.kind != dataSection {
continue
}
if sec.references == 0 {
// Prune data sections which are not referenced by any
// instructions.
continue
}
mapSpec := &MapSpec{
Name: SanitizeName(sec.Name, -1),
Type: Array,
KeySize: 4,
ValueSize: uint32(sec.Size),
MaxEntries: 1,
}
switch sec.Type {
// Only open the section if we know there's actual data to be read.
case elf.SHT_PROGBITS:
data, err := sec.Data()
if err != nil {
return fmt.Errorf("data section %s: can't get contents: %w", sec.Name, err)
}
if uint64(len(data)) > math.MaxUint32 {
return fmt.Errorf("data section %s: contents exceed maximum size", sec.Name)
}
mapSpec.Contents = []MapKV{{uint32(0), data}}
case elf.SHT_NOBITS:
// NOBITS sections like .bss contain only zeroes, and since data sections
// are Arrays, the kernel already preallocates them. Skip reading zeroes
// from the ELF.
default:
return fmt.Errorf("data section %s: unknown section type %s", sec.Name, sec.Type)
}
// It is possible for a data section to exist without a corresponding BTF Datasec
// if it only contains anonymous values like macro-defined arrays.
if ec.btf != nil {
var ds *btf.Datasec
if ec.btf.TypeByName(sec.Name, &ds) == nil {
// Assign the spec's key and BTF only if the Datasec lookup was successful.
mapSpec.Key = &btf.Void{}
mapSpec.Value = ds
}
}
if strings.HasPrefix(sec.Name, ".rodata") {
mapSpec.Flags = unix.BPF_F_RDONLY_PROG
mapSpec.Freeze = true
}
ec.maps[sec.Name] = mapSpec
}
return nil
}
// loadKconfigSection handles the 'virtual' Datasec .kconfig that doesn't
// have a corresponding ELF section and exist purely in BTF.
func (ec *elfCode) loadKconfigSection() error {
if ec.btf == nil {
return nil
}
var ds *btf.Datasec
err := ec.btf.TypeByName(".kconfig", &ds)
if errors.Is(err, btf.ErrNotFound) {
return nil
}
if err != nil {
return err
}
if ds.Size == 0 {
return errors.New("zero-length .kconfig")
}
ec.kconfig = &MapSpec{
Name: ".kconfig",
Type: Array,
KeySize: uint32(4),
ValueSize: ds.Size,
MaxEntries: 1,
Flags: unix.BPF_F_RDONLY_PROG,
Freeze: true,
Key: &btf.Int{Size: 4},
Value: ds,
}
return nil
}
// loadKsymsSection handles the 'virtual' Datasec .ksyms that doesn't
// have a corresponding ELF section and exist purely in BTF.
func (ec *elfCode) loadKsymsSection() error {
if ec.btf == nil {
return nil
}
var ds *btf.Datasec
err := ec.btf.TypeByName(".ksyms", &ds)
if errors.Is(err, btf.ErrNotFound) {
return nil
}
if err != nil {
return err
}
for _, v := range ds.Vars {
// we have already checked the .ksyms Datasec to only contain Func Vars.
ec.kfuncs[v.Type.TypeName()] = v.Type.(*btf.Func)
}
return nil
}
type libbpfElfSectionDef struct {
pattern string
programType sys.ProgType
attachType sys.AttachType
flags libbpfElfSectionFlag
}
type libbpfElfSectionFlag uint32
// The values correspond to enum sec_def_flags in libbpf.
const (
_SEC_NONE libbpfElfSectionFlag = 0
_SEC_EXP_ATTACH_OPT libbpfElfSectionFlag = 1 << (iota - 1)
_SEC_ATTACHABLE
_SEC_ATTACH_BTF
_SEC_SLEEPABLE
_SEC_XDP_FRAGS
_SEC_USDT
// Ignore any present extra in order to preserve backwards compatibility
// with earlier versions of the library.
ignoreExtra
_SEC_ATTACHABLE_OPT = _SEC_ATTACHABLE | _SEC_EXP_ATTACH_OPT
)
func init() {
// Compatibility with older versions of the library.
// We prepend libbpf definitions since they contain a prefix match
// for "xdp".
elfSectionDefs = append([]libbpfElfSectionDef{
{"xdp.frags/", sys.BPF_PROG_TYPE_XDP, sys.BPF_XDP, _SEC_XDP_FRAGS | ignoreExtra},
{"xdp.frags_devmap/", sys.BPF_PROG_TYPE_XDP, sys.BPF_XDP_DEVMAP, _SEC_XDP_FRAGS},
{"xdp_devmap/", sys.BPF_PROG_TYPE_XDP, sys.BPF_XDP_DEVMAP, 0},
{"xdp.frags_cpumap/", sys.BPF_PROG_TYPE_XDP, sys.BPF_XDP_CPUMAP, _SEC_XDP_FRAGS},
{"xdp_cpumap/", sys.BPF_PROG_TYPE_XDP, sys.BPF_XDP_CPUMAP, 0},
// This has been in the library since the beginning of time. Not sure
// where it came from.
{"seccomp", sys.BPF_PROG_TYPE_SOCKET_FILTER, 0, _SEC_NONE},
}, elfSectionDefs...)
}
func getProgType(sectionName string) (ProgramType, AttachType, uint32, string) {
// Skip optional program marking for now.
sectionName = strings.TrimPrefix(sectionName, "?")
for _, t := range elfSectionDefs {
extra, ok := matchSectionName(sectionName, t.pattern)
if !ok {
continue
}
programType := ProgramType(t.programType)
attachType := AttachType(t.attachType)
var flags uint32
if t.flags&_SEC_SLEEPABLE > 0 {
flags |= unix.BPF_F_SLEEPABLE
}
if t.flags&_SEC_XDP_FRAGS > 0 {
flags |= unix.BPF_F_XDP_HAS_FRAGS
}
if t.flags&_SEC_EXP_ATTACH_OPT > 0 {
if programType == XDP {
// The library doesn't yet have code to fallback to not specifying
// attach type. Only do this for XDP since we've enforced correct
// attach type for all other program types.
attachType = AttachNone
}
}
if t.flags&ignoreExtra > 0 {
extra = ""
}
return programType, attachType, flags, extra
}
return UnspecifiedProgram, AttachNone, 0, ""
}
// matchSectionName checks a section name against a pattern.
//
// It's behaviour mirrors that of libbpf's sec_def_matches.
func matchSectionName(sectionName, pattern string) (extra string, found bool) {
have, extra, found := strings.Cut(sectionName, "/")
want := strings.TrimRight(pattern, "+/")
if strings.HasSuffix(pattern, "/") {
// Section name must have a slash and extra may be empty.
return extra, have == want && found
} else if strings.HasSuffix(pattern, "+") {
// Section name may have a slash and extra may be empty.
return extra, have == want
}
// Section name must have a prefix. extra is ignored.
return "", strings.HasPrefix(sectionName, pattern)
}
func (ec *elfCode) loadSectionRelocations(sec *elf.Section, symbols []elf.Symbol) (map[uint64]elf.Symbol, error) {
rels := make(map[uint64]elf.Symbol)
if sec.Entsize < 16 {
return nil, fmt.Errorf("section %s: relocations are less than 16 bytes", sec.Name)
}
r := bufio.NewReader(sec.Open())
for off := uint64(0); off < sec.Size; off += sec.Entsize {
ent := io.LimitReader(r, int64(sec.Entsize))
var rel elf.Rel64
if binary.Read(ent, ec.ByteOrder, &rel) != nil {
return nil, fmt.Errorf("can't parse relocation at offset %v", off)
}
symNo := int(elf.R_SYM64(rel.Info) - 1)
if symNo >= len(symbols) {
return nil, fmt.Errorf("offset %d: symbol %d doesn't exist", off, symNo)
}
symbol := symbols[symNo]
rels[rel.Off] = symbol
}
return rels, nil
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。