Ai
59 Star 594 Fork 1.4K

Ascend/ModelZoo-PyTorch
暂停

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
sample_controlnet.py 2.62 KB
一键复制 编辑 原始数据 按行查看 历史
from pathlib import Path
from loguru import logger
from mllm.dialoggen_demo import DialogGen
from hydit.config import get_args
from hydit.inference_controlnet import End2End
from torchvision import transforms as T
import numpy as np
norm_transform = T.Compose(
[
T.ToTensor(),
T.Normalize([0.5], [0.5]),
]
)
from PIL import Image
def inferencer():
args = get_args()
models_root_path = Path(args.model_root)
if not models_root_path.exists():
raise ValueError(f"`models_root` not exists: {models_root_path}")
# Load models
gen = End2End(args, models_root_path)
# Try to enhance prompt
if args.enhance:
logger.info("Loading DialogGen model (for prompt enhancement)...")
enhancer = DialogGen(str(models_root_path / "dialoggen"), args.load_4bit)
logger.info("DialogGen model loaded.")
else:
enhancer = None
return args, gen, enhancer
if __name__ == "__main__":
args, gen, enhancer = inferencer()
if enhancer:
logger.info("Prompt Enhancement...")
success, enhanced_prompt = enhancer(args.prompt)
if not success:
logger.info("Sorry, the prompt is not compliant, refuse to draw.")
exit()
logger.info(f"Enhanced prompt: {enhanced_prompt}")
else:
enhanced_prompt = None
# Run inference
logger.info("Generating images...")
height, width = args.image_size
condition = Image.open(args.condition_image_path).convert('RGB').resize((width, height))
image = norm_transform(condition)
image = image.unsqueeze(0).cuda()
results = gen.predict(args.prompt,
height=height,
width=width,
image=image,
seed=args.seed,
enhanced_prompt=enhanced_prompt,
negative_prompt=args.negative,
infer_steps=args.infer_steps,
guidance_scale=args.cfg_scale,
batch_size=args.batch_size,
src_size_cond=args.size_cond,
)
images = results['images']
# Save images
save_dir = Path('results')
save_dir.mkdir(exist_ok=True)
# Find the first available index
all_files = list(save_dir.glob('*.png'))
if all_files:
start = max([int(f.stem) for f in all_files]) + 1
else:
start = 0
for idx, pil_img in enumerate(images):
save_path = save_dir / f"{idx + start}.png"
pil_img.save(save_path)
logger.info(f"Save to {save_path}")
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/ascend/ModelZoo-PyTorch.git
git@gitee.com:ascend/ModelZoo-PyTorch.git
ascend
ModelZoo-PyTorch
ModelZoo-PyTorch
master

搜索帮助