Ai
59 Star 594 Fork 1.4K

Ascend/ModelZoo-PyTorch
暂停

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
Test.py 2.63 KB
一键复制 编辑 原始数据 按行查看 历史
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import torch
if torch.__version__ >= "1.8":
import torch_npu
import torch.nn.functional as F
import numpy as np
import os, argparse
from scipy import misc
from lib.PraNet_Res2Net import PraNet
from utils.dataloader import test_dataset
parser = argparse.ArgumentParser()
parser.add_argument('--testsize', type=int, default=352, help='testing size')
parser.add_argument('--pth_path', type=str, default='./snapshots/PraNet_Res2Net/PraNet-19.pth')
parser.add_argument('--device', default='npu', type=str, help='npu or gpu')
for _data_name in ['Kvasir']:
data_path = './data/TestDataset/{}/'.format(_data_name)
save_path = './results/PraNet/{}/'.format(_data_name)
opt = parser.parse_args()
model = PraNet()
pretrained_dict = torch.load("./snapshots/PraNet_Res2Net/PraNet-19.pth", map_location="cpu")
model.load_state_dict({k.replace('module.',''):v for k, v in pretrained_dict.items()})
if "fc.weight" in pretrained_dict:
pretrained_dict.pop('fc.weight')
pretrained_dict.pop('fc.bias')
model.load_state_dict(pretrained_dict, strict=False)
if opt.device == 'gpu':
model.cuda()
else:
model.npu()
model.eval()
os.makedirs(save_path, exist_ok=True)
image_root = '{}/images/'.format(data_path)
gt_root = '{}/masks/'.format(data_path)
test_loader = test_dataset(image_root, gt_root, opt.testsize)
for i in range(test_loader.size):
image, gt, name = test_loader.load_data()
gt = np.asarray(gt, np.float32)
gt /= (gt.max() + 1e-8)
if opt.device == 'gpu':
image = image.cuda()
else:
image = image.npu()
res5, res4, res3, res2 = model(image)
res = res2
res = F.upsample(res, size=gt.shape, mode='bilinear', align_corners=False)
print(gt.shape)
res = res.sigmoid().data.cpu().numpy().squeeze()
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
misc.imsave(save_path+name, res)
print("#"*20, " Test Done !")
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/ascend/ModelZoo-PyTorch.git
git@gitee.com:ascend/ModelZoo-PyTorch.git
ascend
ModelZoo-PyTorch
ModelZoo-PyTorch
master

搜索帮助