登录
注册
开源
企业版
高校版
搜索
帮助中心
使用条款
关于我们
开源
企业版
高校版
私有云
模力方舟
AI 队友
登录
注册
Gitee 年度开源项目评选中~
代码拉取完成,页面将自动刷新
仓库状态说明
捐赠
捐赠前请先登录
取消
前往登录
扫描微信二维码支付
取消
支付完成
支付提示
将跳转至支付宝完成支付
确定
取消
Watch
不关注
关注所有动态
仅关注版本发行动态
关注但不提醒动态
59
Star
596
Fork
1.4K
Ascend
/
ModelZoo-PyTorch
暂停
代码
Issues
523
Pull Requests
200
Wiki
统计
流水线
服务
质量分析
Jenkins for Gitee
腾讯云托管
腾讯云 Serverless
悬镜安全
阿里云 SAE
Codeblitz
SBOM
我知道了,不再自动展开
更新失败,请稍后重试!
移除标识
内容风险标识
本任务被
标识为内容中包含有代码安全 Bug 、隐私泄露等敏感信息,仓库外成员不可访问
GRU_for_PyTorchm GE问题 DynamicGRUV2Grad, error code is 500002
TODO
#ICVCTS
训练问题
Giannuo
创建于
2025-08-29 10:19
一、问题现象(附报错日志上下文):  二、软件版本: -- CANN 版本 (e.g., CANN 3.0.x,5.x.x): **8.1.RC1** -- Tensorflow/Pytorch/MindSpore 版本: Pytorch 2.6.0 -- Python 版本 (e.g., Python 3.7.5): 3.9.23 -- MindStudio版本 (e.g., MindStudio 2.0.0 (beta3)): / -- 操作系统版本 (e.g., Ubuntu 18.04): Ubuntu 22.04 -- de_core_news_sm-3.8.0-py3-none-any.whl -- en_core_web_sm-3.8.0-py3-none-any.whl 三、测试步骤: 参考https://www.hiascend.com/software/modelzoo/models/detail/25d8422a3e0648389f80e599be9a1ab8文档执行。 客户希望使用最新版本pytorch测试,所以安装了Pytorch 2.6.0 分词包下载的3.8.0的版本,github release直接下载whl后安装 数据集由于外网数据集下载问题,改为手动下载后解压到指定目录 最后执行 bash ./test/train_performance_1p.sh --data_path=数据集路径 时出现报错 四、日志信息: ``` Namespace(workers=12, epochs=1, batch_size=1536, world_size=1, rank=0, dist_url='tcp://127.0.0.1:50000', dist_backend='nccl', data_dir='/root/xxx/gru/datasets', seed=1234, gpu=None, multiprocessing_distributed=False, npu=1, amp=True, loss_scale=32.0, opt_level='O2') /root/xxx/gru/ModelZoo-PyTorch/PyTorch/built-in/nlp/GRU_for_PyTorch/gru_1p.py:63: UserWarning: to - 1 is out of bounds [-(2^24), 2^24]. Due to precision limitations float can support discrete uniform distribution only within this range. This warning will become an error in version 1.7 release, please fix the code in advance (Triggered internally at /pytorch/aten/src/ATen/native/DistributionTemplates.h:112.) return torch.randint(1, MAX, size=(num,), dtype=torch.float) [W829 01:46:19.872570637 compiler_depend.ts:65] Warning: Warning: The torch.npu.*DtypeTensor constructors are no longer recommended. It's best to use methods such as torch.tensor(data, dtype=*, device='npu') to create tensors. (function operator()) /root/anaconda3/envs/xxx-gru/lib/python3.9/site-packages/torch/nn/modules/rnn.py:1393: UserWarning: Cannot create tensor with interal format while allow_internel_format=False, tensor will be created with base format. (Triggered internally at build/CMakeFiles/torch_npu.dir/compiler_depend.ts:335.) result = _VF.gru( The model has 14,219,781 trainable parameters Selected optimization level O2: FP16 training with FP32 batchnorm and FP32 master weights. Defaults for this optimization level are: enabled : True opt_level : O2 cast_model_type : torch.float16 patch_torch_functions : False keep_batchnorm_fp32 : True master_weights : True loss_scale : dynamic combine_grad : None combine_ddp : None ddp_replica_count : 4 check_combined_tensors : None user_cast_preferred : None Processing user overrides (additional kwargs that are not None)... After processing overrides, optimization options are: enabled : True opt_level : O2 cast_model_type : torch.float16 patch_torch_functions : False keep_batchnorm_fp32 : True master_weights : True loss_scale : 32.0 combine_grad : None combine_ddp : None ddp_replica_count : 4 check_combined_tensors : None user_cast_preferred : None Traceback (most recent call last): File "/root/xxx/gru/ModelZoo-PyTorch/PyTorch/built-in/nlp/GRU_for_PyTorch/gru_1p.py", line 408, in <module> main() File "/root/xxx/gru/ModelZoo-PyTorch/PyTorch/built-in/nlp/GRU_for_PyTorch/gru_1p.py", line 126, in main main_worker(args) File "/root/xxx/gru/ModelZoo-PyTorch/PyTorch/built-in/nlp/GRU_for_PyTorch/gru_1p.py", line 175, in main_worker train_loss = train(model, train_iterator, optimizer, criterion, args, CLIP, epoch) File "/root/xxx/gru/ModelZoo-PyTorch/PyTorch/built-in/nlp/GRU_for_PyTorch/gru_1p.py", line 233, in train scaled_loss.backward() File "/root/anaconda3/envs/xxx-gru/lib/python3.9/site-packages/torch/_tensor.py", line 626, in backward torch.autograd.backward( File "/root/anaconda3/envs/xxx-gru/lib/python3.9/site-packages/torch/autograd/__init__.py", line 347, in backward _engine_run_backward( File "/root/anaconda3/envs/xxx-gru/lib/python3.9/site-packages/torch/autograd/graph.py", line 823, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass RuntimeError: InnerRun:build/CMakeFiles/torch_npu.dir/compiler_depend.ts:234 OPS function error: DynamicGRUV2Grad, error code is 500002 [ERROR] 2025-08-29-01:46:24 (PID:3621708, Device:1, RankID:-1) ERR01100 OPS call acl api failed [Error]: A GE error occurs in the system. Rectify the fault based on the error information in the ascend log. EZ9999: Inner Error! EZ9999: [PID: 3621708] 2025-08-29-01:46:24.077.619 ChooseCompileInfo Failed[FUNC:Classify][FILE:transdata_dsl.cc][LINE:704] TraceBack (most recent call last): Autotiling func failed[FUNC:AutoTilingRun][FILE:auto_tiling_rt2.cc][LINE:109] op[trans_TransData_38], call DoTiling failed[FUNC:TransDataDSLTiling][FILE:trans_data.cc][LINE:878] op[trans_TransData_38], call DoTiling failed[FUNC:Tiling4TransData][FILE:trans_data.cc][LINE:977] [Exec][Op]Execute op failed. op type = DynamicGRUV2Grad, ge result = 4294967295[FUNC:ReportCallError][FILE:log_inner.cpp][LINE:161] ```
一、问题现象(附报错日志上下文):  二、软件版本: -- CANN 版本 (e.g., CANN 3.0.x,5.x.x): **8.1.RC1** -- Tensorflow/Pytorch/MindSpore 版本: Pytorch 2.6.0 -- Python 版本 (e.g., Python 3.7.5): 3.9.23 -- MindStudio版本 (e.g., MindStudio 2.0.0 (beta3)): / -- 操作系统版本 (e.g., Ubuntu 18.04): Ubuntu 22.04 -- de_core_news_sm-3.8.0-py3-none-any.whl -- en_core_web_sm-3.8.0-py3-none-any.whl 三、测试步骤: 参考https://www.hiascend.com/software/modelzoo/models/detail/25d8422a3e0648389f80e599be9a1ab8文档执行。 客户希望使用最新版本pytorch测试,所以安装了Pytorch 2.6.0 分词包下载的3.8.0的版本,github release直接下载whl后安装 数据集由于外网数据集下载问题,改为手动下载后解压到指定目录 最后执行 bash ./test/train_performance_1p.sh --data_path=数据集路径 时出现报错 四、日志信息: ``` Namespace(workers=12, epochs=1, batch_size=1536, world_size=1, rank=0, dist_url='tcp://127.0.0.1:50000', dist_backend='nccl', data_dir='/root/xxx/gru/datasets', seed=1234, gpu=None, multiprocessing_distributed=False, npu=1, amp=True, loss_scale=32.0, opt_level='O2') /root/xxx/gru/ModelZoo-PyTorch/PyTorch/built-in/nlp/GRU_for_PyTorch/gru_1p.py:63: UserWarning: to - 1 is out of bounds [-(2^24), 2^24]. Due to precision limitations float can support discrete uniform distribution only within this range. This warning will become an error in version 1.7 release, please fix the code in advance (Triggered internally at /pytorch/aten/src/ATen/native/DistributionTemplates.h:112.) return torch.randint(1, MAX, size=(num,), dtype=torch.float) [W829 01:46:19.872570637 compiler_depend.ts:65] Warning: Warning: The torch.npu.*DtypeTensor constructors are no longer recommended. It's best to use methods such as torch.tensor(data, dtype=*, device='npu') to create tensors. (function operator()) /root/anaconda3/envs/xxx-gru/lib/python3.9/site-packages/torch/nn/modules/rnn.py:1393: UserWarning: Cannot create tensor with interal format while allow_internel_format=False, tensor will be created with base format. (Triggered internally at build/CMakeFiles/torch_npu.dir/compiler_depend.ts:335.) result = _VF.gru( The model has 14,219,781 trainable parameters Selected optimization level O2: FP16 training with FP32 batchnorm and FP32 master weights. Defaults for this optimization level are: enabled : True opt_level : O2 cast_model_type : torch.float16 patch_torch_functions : False keep_batchnorm_fp32 : True master_weights : True loss_scale : dynamic combine_grad : None combine_ddp : None ddp_replica_count : 4 check_combined_tensors : None user_cast_preferred : None Processing user overrides (additional kwargs that are not None)... After processing overrides, optimization options are: enabled : True opt_level : O2 cast_model_type : torch.float16 patch_torch_functions : False keep_batchnorm_fp32 : True master_weights : True loss_scale : 32.0 combine_grad : None combine_ddp : None ddp_replica_count : 4 check_combined_tensors : None user_cast_preferred : None Traceback (most recent call last): File "/root/xxx/gru/ModelZoo-PyTorch/PyTorch/built-in/nlp/GRU_for_PyTorch/gru_1p.py", line 408, in <module> main() File "/root/xxx/gru/ModelZoo-PyTorch/PyTorch/built-in/nlp/GRU_for_PyTorch/gru_1p.py", line 126, in main main_worker(args) File "/root/xxx/gru/ModelZoo-PyTorch/PyTorch/built-in/nlp/GRU_for_PyTorch/gru_1p.py", line 175, in main_worker train_loss = train(model, train_iterator, optimizer, criterion, args, CLIP, epoch) File "/root/xxx/gru/ModelZoo-PyTorch/PyTorch/built-in/nlp/GRU_for_PyTorch/gru_1p.py", line 233, in train scaled_loss.backward() File "/root/anaconda3/envs/xxx-gru/lib/python3.9/site-packages/torch/_tensor.py", line 626, in backward torch.autograd.backward( File "/root/anaconda3/envs/xxx-gru/lib/python3.9/site-packages/torch/autograd/__init__.py", line 347, in backward _engine_run_backward( File "/root/anaconda3/envs/xxx-gru/lib/python3.9/site-packages/torch/autograd/graph.py", line 823, in _engine_run_backward return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass RuntimeError: InnerRun:build/CMakeFiles/torch_npu.dir/compiler_depend.ts:234 OPS function error: DynamicGRUV2Grad, error code is 500002 [ERROR] 2025-08-29-01:46:24 (PID:3621708, Device:1, RankID:-1) ERR01100 OPS call acl api failed [Error]: A GE error occurs in the system. Rectify the fault based on the error information in the ascend log. EZ9999: Inner Error! EZ9999: [PID: 3621708] 2025-08-29-01:46:24.077.619 ChooseCompileInfo Failed[FUNC:Classify][FILE:transdata_dsl.cc][LINE:704] TraceBack (most recent call last): Autotiling func failed[FUNC:AutoTilingRun][FILE:auto_tiling_rt2.cc][LINE:109] op[trans_TransData_38], call DoTiling failed[FUNC:TransDataDSLTiling][FILE:trans_data.cc][LINE:878] op[trans_TransData_38], call DoTiling failed[FUNC:Tiling4TransData][FILE:trans_data.cc][LINE:977] [Exec][Op]Execute op failed. op type = DynamicGRUV2Grad, ge result = 4294967295[FUNC:ReportCallError][FILE:log_inner.cpp][LINE:161] ```
评论 (
0
)
登录
后才可以发表评论
状态
TODO
TODO
ACCEPTED
Analysing
Feedback
WIP
Replied
CLOSED
DONE
REJECTED
负责人
未设置
标签
未设置
项目
未立项任务
未立项任务
里程碑
未关联里程碑
未关联里程碑
Pull Requests
未关联
未关联
关联的 Pull Requests 被合并后可能会关闭此 issue
分支
未关联
未关联
master
ci-pipeline
开始日期   -   截止日期
-
置顶选项
不置顶
置顶等级:高
置顶等级:中
置顶等级:低
优先级
不指定
严重
主要
次要
不重要
预计工期
(小时)
参与者(1)
Python
1
https://gitee.com/ascend/ModelZoo-PyTorch.git
git@gitee.com:ascend/ModelZoo-PyTorch.git
ascend
ModelZoo-PyTorch
ModelZoo-PyTorch
点此查找更多帮助
搜索帮助
Git 命令在线学习
如何在 Gitee 导入 GitHub 仓库
Git 仓库基础操作
企业版和社区版功能对比
SSH 公钥设置
如何处理代码冲突
仓库体积过大,如何减小?
如何找回被删除的仓库数据
Gitee 产品配额说明
GitHub仓库快速导入Gitee及同步更新
什么是 Release(发行版)
将 PHP 项目自动发布到 packagist.org
仓库举报
回到顶部
登录提示
该操作需登录 Gitee 帐号,请先登录后再操作。
立即登录
没有帐号,去注册