代码拉取完成,页面将自动刷新
// Copyright 2012-2015 Oliver Eilhard. All rights reserved.
// Use of this source code is governed by a MIT-license.
// See http://olivere.mit-license.org/license.txt for details.
package elastic
// MovAvgAggregation operates on a series of data. It will slide a window
// across the data and emit the average value of that window.
//
// For more details, see
// https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-pipeline-movavg-aggregation.html
type MovAvgAggregation struct {
format string
gapPolicy string
model MovAvgModel
window *int
predict *int
minimize *bool
subAggregations map[string]Aggregation
meta map[string]interface{}
bucketsPaths []string
}
// NewMovAvgAggregation creates and initializes a new MovAvgAggregation.
func NewMovAvgAggregation() *MovAvgAggregation {
return &MovAvgAggregation{
subAggregations: make(map[string]Aggregation),
bucketsPaths: make([]string, 0),
}
}
func (a *MovAvgAggregation) Format(format string) *MovAvgAggregation {
a.format = format
return a
}
// GapPolicy defines what should be done when a gap in the series is discovered.
// Valid values include "insert_zeros" or "skip". Default is "insert_zeros".
func (a *MovAvgAggregation) GapPolicy(gapPolicy string) *MovAvgAggregation {
a.gapPolicy = gapPolicy
return a
}
// GapInsertZeros inserts zeros for gaps in the series.
func (a *MovAvgAggregation) GapInsertZeros() *MovAvgAggregation {
a.gapPolicy = "insert_zeros"
return a
}
// GapSkip skips gaps in the series.
func (a *MovAvgAggregation) GapSkip() *MovAvgAggregation {
a.gapPolicy = "skip"
return a
}
// Model is used to define what type of moving average you want to use
// in the series.
func (a *MovAvgAggregation) Model(model MovAvgModel) *MovAvgAggregation {
a.model = model
return a
}
// Window sets the window size for the moving average. This window will
// "slide" across the series, and the values inside that window will
// be used to calculate the moving avg value.
func (a *MovAvgAggregation) Window(window int) *MovAvgAggregation {
a.window = &window
return a
}
// Predict sets the number of predictions that should be returned.
// Each prediction will be spaced at the intervals in the histogram.
// E.g. a predict of 2 will return two new buckets at the end of the
// histogram with the predicted values.
func (a *MovAvgAggregation) Predict(numPredictions int) *MovAvgAggregation {
a.predict = &numPredictions
return a
}
// Minimize determines if the model should be fit to the data using a
// cost minimizing algorithm.
func (a *MovAvgAggregation) Minimize(minimize bool) *MovAvgAggregation {
a.minimize = &minimize
return a
}
// SubAggregation adds a sub-aggregation to this aggregation.
func (a *MovAvgAggregation) SubAggregation(name string, subAggregation Aggregation) *MovAvgAggregation {
a.subAggregations[name] = subAggregation
return a
}
// Meta sets the meta data to be included in the aggregation response.
func (a *MovAvgAggregation) Meta(metaData map[string]interface{}) *MovAvgAggregation {
a.meta = metaData
return a
}
// BucketsPath sets the paths to the buckets to use for this pipeline aggregator.
func (a *MovAvgAggregation) BucketsPath(bucketsPaths ...string) *MovAvgAggregation {
a.bucketsPaths = append(a.bucketsPaths, bucketsPaths...)
return a
}
func (a *MovAvgAggregation) Source() (interface{}, error) {
source := make(map[string]interface{})
params := make(map[string]interface{})
source["moving_avg"] = params
if a.format != "" {
params["format"] = a.format
}
if a.gapPolicy != "" {
params["gap_policy"] = a.gapPolicy
}
if a.model != nil {
params["model"] = a.model.Name()
settings := a.model.Settings()
if len(settings) > 0 {
params["settings"] = settings
}
}
if a.window != nil {
params["window"] = *a.window
}
if a.predict != nil {
params["predict"] = *a.predict
}
if a.minimize != nil {
params["minimize"] = *a.minimize
}
// Add buckets paths
switch len(a.bucketsPaths) {
case 0:
case 1:
params["buckets_path"] = a.bucketsPaths[0]
default:
params["buckets_path"] = a.bucketsPaths
}
// AggregationBuilder (SubAggregations)
if len(a.subAggregations) > 0 {
aggsMap := make(map[string]interface{})
source["aggregations"] = aggsMap
for name, aggregate := range a.subAggregations {
src, err := aggregate.Source()
if err != nil {
return nil, err
}
aggsMap[name] = src
}
}
// Add Meta data if available
if len(a.meta) > 0 {
source["meta"] = a.meta
}
return source, nil
}
// -- Models for moving averages --
// See https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-pipeline-movavg-aggregation.html#_models
// MovAvgModel specifies the model to use with the MovAvgAggregation.
type MovAvgModel interface {
Name() string
Settings() map[string]interface{}
}
// -- EWMA --
// EWMAMovAvgModel calculates an exponentially weighted moving average.
//
// For more details, see
// https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-pipeline-movavg-aggregation.html#_ewma_exponentially_weighted
type EWMAMovAvgModel struct {
alpha *float64
}
// NewEWMAMovAvgModel creates and initializes a new EWMAMovAvgModel.
func NewEWMAMovAvgModel() *EWMAMovAvgModel {
return &EWMAMovAvgModel{}
}
// Alpha controls the smoothing of the data. Alpha = 1 retains no memory
// of past values (e.g. a random walk), while alpha = 0 retains infinite
// memory of past values (e.g. the series mean). Useful values are somewhere
// in between. Defaults to 0.5.
func (m *EWMAMovAvgModel) Alpha(alpha float64) *EWMAMovAvgModel {
m.alpha = &alpha
return m
}
// Name of the model.
func (m *EWMAMovAvgModel) Name() string {
return "ewma"
}
// Settings of the model.
func (m *EWMAMovAvgModel) Settings() map[string]interface{} {
settings := make(map[string]interface{})
if m.alpha != nil {
settings["alpha"] = *m.alpha
}
return settings
}
// -- Holt linear --
// HoltLinearMovAvgModel calculates a doubly exponential weighted moving average.
//
// For more details, see
// https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-pipeline-movavg-aggregation.html#_holt_linear
type HoltLinearMovAvgModel struct {
alpha *float64
beta *float64
}
// NewHoltLinearMovAvgModel creates and initializes a new HoltLinearMovAvgModel.
func NewHoltLinearMovAvgModel() *HoltLinearMovAvgModel {
return &HoltLinearMovAvgModel{}
}
// Alpha controls the smoothing of the data. Alpha = 1 retains no memory
// of past values (e.g. a random walk), while alpha = 0 retains infinite
// memory of past values (e.g. the series mean). Useful values are somewhere
// in between. Defaults to 0.5.
func (m *HoltLinearMovAvgModel) Alpha(alpha float64) *HoltLinearMovAvgModel {
m.alpha = &alpha
return m
}
// Beta is equivalent to Alpha but controls the smoothing of the trend
// instead of the data.
func (m *HoltLinearMovAvgModel) Beta(beta float64) *HoltLinearMovAvgModel {
m.beta = &beta
return m
}
// Name of the model.
func (m *HoltLinearMovAvgModel) Name() string {
return "holt"
}
// Settings of the model.
func (m *HoltLinearMovAvgModel) Settings() map[string]interface{} {
settings := make(map[string]interface{})
if m.alpha != nil {
settings["alpha"] = *m.alpha
}
if m.beta != nil {
settings["beta"] = *m.beta
}
return settings
}
// -- Holt Winters --
// HoltWintersMovAvgModel calculates a triple exponential weighted moving average.
//
// For more details, see
// https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-pipeline-movavg-aggregation.html#_holt_winters
type HoltWintersMovAvgModel struct {
alpha *float64
beta *float64
gamma *float64
period *int
seasonalityType string
pad *bool
}
// NewHoltWintersMovAvgModel creates and initializes a new HoltWintersMovAvgModel.
func NewHoltWintersMovAvgModel() *HoltWintersMovAvgModel {
return &HoltWintersMovAvgModel{}
}
// Alpha controls the smoothing of the data. Alpha = 1 retains no memory
// of past values (e.g. a random walk), while alpha = 0 retains infinite
// memory of past values (e.g. the series mean). Useful values are somewhere
// in between. Defaults to 0.5.
func (m *HoltWintersMovAvgModel) Alpha(alpha float64) *HoltWintersMovAvgModel {
m.alpha = &alpha
return m
}
// Beta is equivalent to Alpha but controls the smoothing of the trend
// instead of the data.
func (m *HoltWintersMovAvgModel) Beta(beta float64) *HoltWintersMovAvgModel {
m.beta = &beta
return m
}
func (m *HoltWintersMovAvgModel) Gamma(gamma float64) *HoltWintersMovAvgModel {
m.gamma = &gamma
return m
}
func (m *HoltWintersMovAvgModel) Period(period int) *HoltWintersMovAvgModel {
m.period = &period
return m
}
func (m *HoltWintersMovAvgModel) SeasonalityType(typ string) *HoltWintersMovAvgModel {
m.seasonalityType = typ
return m
}
func (m *HoltWintersMovAvgModel) Pad(pad bool) *HoltWintersMovAvgModel {
m.pad = &pad
return m
}
// Name of the model.
func (m *HoltWintersMovAvgModel) Name() string {
return "holt_winters"
}
// Settings of the model.
func (m *HoltWintersMovAvgModel) Settings() map[string]interface{} {
settings := make(map[string]interface{})
if m.alpha != nil {
settings["alpha"] = *m.alpha
}
if m.beta != nil {
settings["beta"] = *m.beta
}
if m.gamma != nil {
settings["gamma"] = *m.gamma
}
if m.period != nil {
settings["period"] = *m.period
}
if m.pad != nil {
settings["pad"] = *m.pad
}
if m.seasonalityType != "" {
settings["type"] = m.seasonalityType
}
return settings
}
// -- Linear --
// LinearMovAvgModel calculates a linearly weighted moving average, such
// that older values are linearly less important. "Time" is determined
// by position in collection.
//
// For more details, see
// https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-pipeline-movavg-aggregation.html#_linear
type LinearMovAvgModel struct {
}
// NewLinearMovAvgModel creates and initializes a new LinearMovAvgModel.
func NewLinearMovAvgModel() *LinearMovAvgModel {
return &LinearMovAvgModel{}
}
// Name of the model.
func (m *LinearMovAvgModel) Name() string {
return "linear"
}
// Settings of the model.
func (m *LinearMovAvgModel) Settings() map[string]interface{} {
return nil
}
// -- Simple --
// SimpleMovAvgModel calculates a simple unweighted (arithmetic) moving average.
//
// For more details, see
// https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-pipeline-movavg-aggregation.html#_simple
type SimpleMovAvgModel struct {
}
// NewSimpleMovAvgModel creates and initializes a new SimpleMovAvgModel.
func NewSimpleMovAvgModel() *SimpleMovAvgModel {
return &SimpleMovAvgModel{}
}
// Name of the model.
func (m *SimpleMovAvgModel) Name() string {
return "simple"
}
// Settings of the model.
func (m *SimpleMovAvgModel) Settings() map[string]interface{} {
return nil
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。