代码拉取完成,页面将自动刷新
# -*- coding: utf-8 -*-
from invoice_data.dataToNeo4jClass.DataToNeo4jClass import DataToNeo4j
import os
import pandas as pd
# 提取excel表格中数据,将其转换成dateframe类型
os.chdir('xxxx')
invoice_data = pd.read_excel('./Invoice_data_Demo.xls', header=0, encoding='utf8')
print(invoice_data)
def data_extraction():
"""节点数据抽取"""
# 取出发票名称到list
node_list_key = []
for i in range(0, len(invoice_data)):
node_list_key.append(invoice_data['发票名称'][i])
# 去除重复的发票名称
node_list_key = list(set(node_list_key))
# value抽出作node
node_list_value = []
for i in range(0, len(invoice_data)):
for n in range(1, len(invoice_data.columns)):
# 取出表头名称invoice_data.columns[i]
node_list_value.append(invoice_data[invoice_data.columns[n]][i])
# 去重
node_list_value = list(set(node_list_value))
# 将list中浮点及整数类型全部转成string类型
node_list_value = [str(i) for i in node_list_value]
return node_list_key, node_list_value
def relation_extraction():
"""联系数据抽取"""
links_dict = {}
name_list = []
relation_list = []
name2_list = []
for i in range(0, len(invoice_data)):
m = 0
name_node = invoice_data[invoice_data.columns[m]][i]
while m < len(invoice_data.columns)-1:
relation_list.append(invoice_data.columns[m+1])
name2_list.append(invoice_data[invoice_data.columns[m+1]][i])
name_list.append(name_node)
m += 1
# 将数据中int类型全部转成string
name_list = [str(i) for i in name_list]
name2_list = [str(i) for i in name2_list]
# 整合数据,将三个list整合成一个dict
links_dict['name'] = name_list
links_dict['relation'] = relation_list
links_dict['name2'] = name2_list
# 将数据转成DataFrame
df_data = pd.DataFrame(links_dict)
return df_data
# 实例化对象
data_extraction()
relation_extraction()
create_data = DataToNeo4j()
create_data.create_node(data_extraction()[0], data_extraction()[1])
create_data.create_relation(relation_extraction())
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。