代码拉取完成,页面将自动刷新
class args():
# training args
epochs = 4 #"number of training epochs, default is 2"
batch_size = 4 #"batch size for training, default is 4"
dataset = "MSCOCO 2014 path"
HEIGHT = 256
WIDTH = 256
save_model_dir = "models" #"path to folder where trained model will be saved."
save_loss_dir = "models/loss" # "path to folder where trained model will be saved."
image_size = 256 #"size of training images, default is 256 X 256"
cuda = 1 #"set it to 1 for running on GPU, 0 for CPU"
seed = 42 #"random seed for training"
ssim_weight = [1,10,100,1000,10000]
ssim_path = ['1e0', '1e1', '1e2', '1e3', '1e4']
lr = 1e-4 #"learning rate, default is 0.001"
lr_light = 1e-4 # "learning rate, default is 0.001"
log_interval = 5 #"number of images after which the training loss is logged, default is 500"
resume = None
resume_auto_en = None
resume_auto_de = None
resume_auto_fn = None
# for test Final_cat_epoch_9_Wed_Jan__9_04_16_28_2019_1.0_1.0.model
model_path_gray = "./models/densefuse_gray.model"
model_path_rgb = "./models/densefuse_rgb.model"
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。