代码拉取完成,页面将自动刷新
import torch
EPSILON = 1e-10
# addition fusion strategy
def addition_fusion(tensor1, tensor2):
return (tensor1 + tensor2)/2
# attention fusion strategy, average based on weight maps
def attention_fusion_weight(tensor1, tensor2):
# avg, max, nuclear
f_spatial = spatial_fusion(tensor1, tensor2)
tensor_f = f_spatial
return tensor_f
def spatial_fusion(tensor1, tensor2, spatial_type='sum'):
shape = tensor1.size()
# calculate spatial attention
spatial1 = spatial_attention(tensor1, spatial_type)
spatial2 = spatial_attention(tensor2, spatial_type)
# get weight map, soft-max
spatial_w1 = torch.exp(spatial1) / (torch.exp(spatial1) + torch.exp(spatial2) + EPSILON)
spatial_w2 = torch.exp(spatial2) / (torch.exp(spatial1) + torch.exp(spatial2) + EPSILON)
spatial_w1 = spatial_w1.repeat(1, shape[1], 1, 1)
spatial_w2 = spatial_w2.repeat(1, shape[1], 1, 1)
tensor_f = spatial_w1 * tensor1 + spatial_w2 * tensor2
return tensor_f
# spatial attention
def spatial_attention(tensor, spatial_type='sum'):
if spatial_type is 'mean':
spatial = tensor.mean(dim=1, keepdim=True)
elif spatial_type is 'sum':
spatial = tensor.sum(dim=1, keepdim=True)
return spatial
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。