代码拉取完成,页面将自动刷新
# Training DenseFuse network
# auto-encoder
import os
import sys
import time
import numpy as np
from tqdm import tqdm, trange
import scipy.io as scio
import random
import torch
from torch.optim import Adam
from torch.autograd import Variable
import utils
from net import DenseFuse_net
from args_fusion import args
import pytorch_msssim
def main():
# os.environ["CUDA_VISIBLE_DEVICES"] = "3"
original_imgs_path = utils.list_images(args.dataset)
train_num = 40000
original_imgs_path = original_imgs_path[:train_num]
random.shuffle(original_imgs_path)
# for i in range(5):
i = 2
train(i, original_imgs_path)
def train(i, original_imgs_path):
batch_size = args.batch_size
# load network model, RGB
in_c = 1 # 1 - gray; 3 - RGB
if in_c == 1:
img_model = 'L'
else:
img_model = 'RGB'
input_nc = in_c
output_nc = in_c
densefuse_model = DenseFuse_net(input_nc, output_nc)
if args.resume is not None:
print('Resuming, initializing using weight from {}.'.format(args.resume))
densefuse_model.load_state_dict(torch.load(args.resume))
print(densefuse_model)
optimizer = Adam(densefuse_model.parameters(), args.lr)
mse_loss = torch.nn.MSELoss()
ssim_loss = pytorch_msssim.msssim
if args.cuda:
densefuse_model.cuda()
tbar = trange(args.epochs)
print('Start training.....')
# creating save path
temp_path_model = os.path.join(args.save_model_dir, args.ssim_path[i])
if os.path.exists(temp_path_model) is False:
os.mkdir(temp_path_model)
temp_path_loss = os.path.join(args.save_loss_dir, args.ssim_path[i])
if os.path.exists(temp_path_loss) is False:
os.mkdir(temp_path_loss)
Loss_pixel = []
Loss_ssim = []
Loss_all = []
all_ssim_loss = 0.
all_pixel_loss = 0.
for e in tbar:
print('Epoch %d.....' % e)
# load training database
image_set_ir, batches = utils.load_dataset(original_imgs_path, batch_size)
densefuse_model.train()
count = 0
for batch in range(batches):
image_paths = image_set_ir[batch * batch_size:(batch * batch_size + batch_size)]
img = utils.get_train_images_auto(image_paths, height=args.HEIGHT, width=args.WIDTH, mode=img_model)
count += 1
optimizer.zero_grad()
img = Variable(img, requires_grad=False)
if args.cuda:
img = img.cuda()
# get fusion image
# encoder
en = densefuse_model.encoder(img)
# decoder
outputs = densefuse_model.decoder(en)
# resolution loss
x = Variable(img.data.clone(), requires_grad=False)
ssim_loss_value = 0.
pixel_loss_value = 0.
for output in outputs:
pixel_loss_temp = mse_loss(output, x)
ssim_loss_temp = ssim_loss(output, x, normalize=True)
ssim_loss_value += (1-ssim_loss_temp)
pixel_loss_value += pixel_loss_temp
ssim_loss_value /= len(outputs)
pixel_loss_value /= len(outputs)
# total loss
total_loss = pixel_loss_value + args.ssim_weight[i] * ssim_loss_value
total_loss.backward()
optimizer.step()
all_ssim_loss += ssim_loss_value.item()
all_pixel_loss += pixel_loss_value.item()
if (batch + 1) % args.log_interval == 0:
mesg = "{}\tEpoch {}:\t[{}/{}]\t pixel loss: {:.6f}\t ssim loss: {:.6f}\t total: {:.6f}".format(
time.ctime(), e + 1, count, batches,
all_pixel_loss / args.log_interval,
all_ssim_loss / args.log_interval,
(args.ssim_weight[i] * all_ssim_loss + all_pixel_loss) / args.log_interval
)
tbar.set_description(mesg)
Loss_pixel.append(all_pixel_loss / args.log_interval)
Loss_ssim.append(all_ssim_loss / args.log_interval)
Loss_all.append((args.ssim_weight[i] * all_ssim_loss + all_pixel_loss) / args.log_interval)
all_ssim_loss = 0.
all_pixel_loss = 0.
if (batch + 1) % (200 * args.log_interval) == 0:
# save model
densefuse_model.eval()
densefuse_model.cpu()
save_model_filename = args.ssim_path[i] + '/' + "Epoch_" + str(e) + "_iters_" + str(count) + "_" + \
str(time.ctime()).replace(' ', '_').replace(':', '_') + "_" + args.ssim_path[
i] + ".model"
save_model_path = os.path.join(args.save_model_dir, save_model_filename)
torch.save(densefuse_model.state_dict(), save_model_path)
# save loss data
# pixel loss
loss_data_pixel = np.array(Loss_pixel)
loss_filename_path = args.ssim_path[i] + '/' + "loss_pixel_epoch_" + str(
args.epochs) + "_iters_" + str(count) + "_" + str(time.ctime()).replace(' ', '_').replace(':', '_') + "_" + \
args.ssim_path[i] + ".mat"
save_loss_path = os.path.join(args.save_loss_dir, loss_filename_path)
scio.savemat(save_loss_path, {'loss_pixel': loss_data_pixel})
# SSIM loss
loss_data_ssim = np.array(Loss_ssim)
loss_filename_path = args.ssim_path[i] + '/' + "loss_ssim_epoch_" + str(
args.epochs) + "_iters_" + str(count) + "_" + str(time.ctime()).replace(' ', '_').replace(':', '_') + "_" + \
args.ssim_path[i] + ".mat"
save_loss_path = os.path.join(args.save_loss_dir, loss_filename_path)
scio.savemat(save_loss_path, {'loss_ssim': loss_data_ssim})
# all loss
loss_data_total = np.array(Loss_all)
loss_filename_path = args.ssim_path[i] + '/' + "loss_total_epoch_" + str(
args.epochs) + "_iters_" + str(count) + "_" + str(time.ctime()).replace(' ', '_').replace(':', '_') + "_" + \
args.ssim_path[i] + ".mat"
save_loss_path = os.path.join(args.save_loss_dir, loss_filename_path)
scio.savemat(save_loss_path, {'loss_total': loss_data_total})
densefuse_model.train()
densefuse_model.cuda()
tbar.set_description("\nCheckpoint, trained model saved at", save_model_path)
# pixel loss
loss_data_pixel = np.array(Loss_pixel)
loss_filename_path = args.ssim_path[i] + '/' + "Final_loss_pixel_epoch_" + str(
args.epochs) + "_" + str(time.ctime()).replace(' ', '_').replace(':','_') + "_" + \
args.ssim_path[i] + ".mat"
save_loss_path = os.path.join(args.save_loss_dir, loss_filename_path)
scio.savemat(save_loss_path, {'loss_pixel': loss_data_pixel})
# SSIM loss
loss_data_ssim = np.array(Loss_ssim)
loss_filename_path = args.ssim_path[i] + '/' + "Final_loss_ssim_epoch_" + str(
args.epochs) + "_" + str(time.ctime()).replace(' ', '_').replace(':', '_') + "_" + \
args.ssim_path[i] + ".mat"
save_loss_path = os.path.join(args.save_loss_dir, loss_filename_path)
scio.savemat(save_loss_path, {'loss_ssim': loss_data_ssim})
# all loss
loss_data_total = np.array(Loss_all)
loss_filename_path = args.ssim_path[i] + '/' + "Final_loss_total_epoch_" + str(
args.epochs) + "_" + str(time.ctime()).replace(' ', '_').replace(':', '_') + "_" + \
args.ssim_path[i] + ".mat"
save_loss_path = os.path.join(args.save_loss_dir, loss_filename_path)
scio.savemat(save_loss_path, {'loss_total': loss_data_total})
# save model
densefuse_model.eval()
densefuse_model.cpu()
save_model_filename = args.ssim_path[i] + '/' "Final_epoch_" + str(args.epochs) + "_" + \
str(time.ctime()).replace(' ', '_').replace(':', '_') + "_" + args.ssim_path[i] + ".model"
save_model_path = os.path.join(args.save_model_dir, save_model_filename)
torch.save(densefuse_model.state_dict(), save_model_path)
print("\nDone, trained model saved at", save_model_path)
if __name__ == "__main__":
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。