1 Star 0 Fork 0

Hui Li(李辉)/densefuse-pytorch

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
utils.py 5.52 KB
一键复制 编辑 原始数据 按行查看 历史
Hui Li(李辉) 提交于 5年前 . codes
import os
from os import listdir, mkdir, sep
from os.path import join, exists, splitext
import random
import numpy as np
import torch
from PIL import Image
from torch.autograd import Variable
from torch.utils.serialization import load_lua
from args_fusion import args
from scipy.misc import imread, imsave, imresize
import matplotlib as mpl
import cv2
from torchvision import datasets, transforms
def list_images(directory):
images = []
names = []
dir = listdir(directory)
dir.sort()
for file in dir:
name = file.lower()
if name.endswith('.png'):
images.append(join(directory, file))
elif name.endswith('.jpg'):
images.append(join(directory, file))
elif name.endswith('.jpeg'):
images.append(join(directory, file))
name1 = name.split('.')
names.append(name1[0])
return images
def tensor_load_rgbimage(filename, size=None, scale=None, keep_asp=False):
img = Image.open(filename).convert('RGB')
if size is not None:
if keep_asp:
size2 = int(size * 1.0 / img.size[0] * img.size[1])
img = img.resize((size, size2), Image.ANTIALIAS)
else:
img = img.resize((size, size), Image.ANTIALIAS)
elif scale is not None:
img = img.resize((int(img.size[0] / scale), int(img.size[1] / scale)), Image.ANTIALIAS)
img = np.array(img).transpose(2, 0, 1)
img = torch.from_numpy(img).float()
return img
def tensor_save_rgbimage(tensor, filename, cuda=True):
if cuda:
# img = tensor.clone().cpu().clamp(0, 255).numpy()
img = tensor.cpu().clamp(0, 255).data[0].numpy()
else:
# img = tensor.clone().clamp(0, 255).numpy()
img = tensor.clamp(0, 255).numpy()
img = img.transpose(1, 2, 0).astype('uint8')
img = Image.fromarray(img)
img.save(filename)
def tensor_save_bgrimage(tensor, filename, cuda=False):
(b, g, r) = torch.chunk(tensor, 3)
tensor = torch.cat((r, g, b))
tensor_save_rgbimage(tensor, filename, cuda)
def gram_matrix(y):
(b, ch, h, w) = y.size()
features = y.view(b, ch, w * h)
features_t = features.transpose(1, 2)
gram = features.bmm(features_t) / (ch * h * w)
return gram
def matSqrt(x):
U,D,V = torch.svd(x)
return U * (D.pow(0.5).diag()) * V.t()
# load training images
def load_dataset(image_path, BATCH_SIZE, num_imgs=None):
if num_imgs is None:
num_imgs = len(image_path)
original_imgs_path = image_path[:num_imgs]
# random
random.shuffle(original_imgs_path)
mod = num_imgs % BATCH_SIZE
print('BATCH SIZE %d.' % BATCH_SIZE)
print('Train images number %d.' % num_imgs)
print('Train images samples %s.' % str(num_imgs / BATCH_SIZE))
if mod > 0:
print('Train set has been trimmed %d samples...\n' % mod)
original_imgs_path = original_imgs_path[:-mod]
batches = int(len(original_imgs_path) // BATCH_SIZE)
return original_imgs_path, batches
def get_image(path, height=256, width=256, mode='L'):
if mode == 'L':
image = imread(path, mode=mode)
elif mode == 'RGB':
image = Image.open(path).convert('RGB')
if height is not None and width is not None:
image = imresize(image, [height, width], interp='nearest')
return image
def get_train_images_auto(paths, height=256, width=256, mode='RGB'):
if isinstance(paths, str):
paths = [paths]
images = []
for path in paths:
image = get_image(path, height, width, mode=mode)
if mode == 'L':
image = np.reshape(image, [1, image.shape[0], image.shape[1]])
else:
image = np.reshape(image, [image.shape[2], image.shape[0], image.shape[1]])
images.append(image)
images = np.stack(images, axis=0)
images = torch.from_numpy(images).float()
return images
def get_test_images(paths, height=None, width=None, mode='RGB'):
ImageToTensor = transforms.Compose([transforms.ToTensor()])
if isinstance(paths, str):
paths = [paths]
images = []
for path in paths:
image = get_image(path, height, width, mode=mode)
if mode == 'L':
image = np.reshape(image, [1, image.shape[0], image.shape[1]])
else:
# test = ImageToTensor(image).numpy()
# shape = ImageToTensor(image).size()
image = ImageToTensor(image).float().numpy()*255
images.append(image)
images = np.stack(images, axis=0)
images = torch.from_numpy(images).float()
return images
# colormap
def colormap():
return mpl.colors.LinearSegmentedColormap.from_list('cmap', ['#FFFFFF', '#98F5FF', '#00FF00', '#FFFF00','#FF0000', '#8B0000'], 256)
def save_images(path, data):
# if isinstance(paths, str):
# paths = [paths]
#
# t1 = len(paths)
# t2 = len(datas)
# assert (len(paths) == len(datas))
# if prefix is None:
# prefix = ''
# if suffix is None:
# suffix = ''
if data.shape[2] == 1:
data = data.reshape([data.shape[0], data.shape[1]])
imsave(path, data)
# for i, path in enumerate(paths):
# data = datas[i]
# # print('data ==>>\n', data)
# if data.shape[2] == 1:
# data = data.reshape([data.shape[0], data.shape[1]])
# # print('data reshape==>>\n', data)
#
# name, ext = splitext(path)
# name = name.split(sep)[-1]
#
# path = join(save_path, prefix + suffix + ext)
# print('data path==>>', path)
#
# # new_im = Image.fromarray(data)
# # new_im.show()
#
# imsave(path, data)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/hli1221/densefuse-pytorch.git
git@gitee.com:hli1221/densefuse-pytorch.git
hli1221
densefuse-pytorch
densefuse-pytorch
master

搜索帮助