代码拉取完成,页面将自动刷新
同步操作将从 Eternal/signature_seal_recognize 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
"""
Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
Format | `export.py --include` | Model
--- | --- | ---
PyTorch | - | yolov5s.pt
TorchScript | `torchscript` | yolov5s.torchscript
ONNX | `onnx` | yolov5s.onnx
OpenVINO | `openvino` | yolov5s_openvino_model/
TensorRT | `engine` | yolov5s.engine
CoreML | `coreml` | yolov5s.mlmodel
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
TensorFlow GraphDef | `pb` | yolov5s.pb
TensorFlow Lite | `tflite` | yolov5s.tflite
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
TensorFlow.js | `tfjs` | yolov5s_web_model/
PaddlePaddle | `paddle` | yolov5s_paddle_model/
Requirements:
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
Usage:
$ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
Inference:
$ python detect.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s_openvino_model # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS-only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s_paddle_model # PaddlePaddle
TensorFlow.js:
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
$ npm install
$ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
$ npm start
"""
import argparse
import contextlib
import json
import os
import platform
import re
import subprocess
import sys
import time
import warnings
from pathlib import Path
import pandas as pd
import torch
from torch.utils.mobile_optimizer import optimize_for_mobile
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
if platform.system() != "Windows":
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.experimental import attempt_load
from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel
from utils.dataloaders import LoadImages
from utils.general import (
LOGGER,
Profile,
check_dataset,
check_img_size,
check_requirements,
check_version,
check_yaml,
colorstr,
file_size,
get_default_args,
print_args,
url2file,
yaml_save,
)
from utils.torch_utils import select_device, smart_inference_mode
MACOS = platform.system() == "Darwin" # macOS environment
class iOSModel(torch.nn.Module):
def __init__(self, model, im):
"""Initializes an iOS compatible model with normalization based on image dimensions."""
super().__init__()
b, c, h, w = im.shape # batch, channel, height, width
self.model = model
self.nc = model.nc # number of classes
if w == h:
self.normalize = 1.0 / w
else:
self.normalize = torch.tensor([1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h]) # broadcast (slower, smaller)
# np = model(im)[0].shape[1] # number of points
# self.normalize = torch.tensor([1. / w, 1. / h, 1. / w, 1. / h]).expand(np, 4) # explicit (faster, larger)
def forward(self, x):
"""Runs forward pass on the input tensor, returning class confidences and normalized coordinates."""
xywh, conf, cls = self.model(x)[0].squeeze().split((4, 1, self.nc), 1)
return cls * conf, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4)
def export_formats():
"""Returns a DataFrame of supported YOLOv5 model export formats and their properties."""
x = [
["PyTorch", "-", ".pt", True, True],
["TorchScript", "torchscript", ".torchscript", True, True],
["ONNX", "onnx", ".onnx", True, True],
["OpenVINO", "openvino", "_openvino_model", True, False],
["TensorRT", "engine", ".engine", False, True],
["CoreML", "coreml", ".mlmodel", True, False],
["TensorFlow SavedModel", "saved_model", "_saved_model", True, True],
["TensorFlow GraphDef", "pb", ".pb", True, True],
["TensorFlow Lite", "tflite", ".tflite", True, False],
["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", False, False],
["TensorFlow.js", "tfjs", "_web_model", False, False],
["PaddlePaddle", "paddle", "_paddle_model", True, True],
]
return pd.DataFrame(x, columns=["Format", "Argument", "Suffix", "CPU", "GPU"])
def try_export(inner_func):
"""Decorator @try_export for YOLOv5 model export functions that logs success/failure, time taken, and file size."""
inner_args = get_default_args(inner_func)
def outer_func(*args, **kwargs):
prefix = inner_args["prefix"]
try:
with Profile() as dt:
f, model = inner_func(*args, **kwargs)
LOGGER.info(f"{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)")
return f, model
except Exception as e:
LOGGER.info(f"{prefix} export failure ❌ {dt.t:.1f}s: {e}")
return None, None
return outer_func
@try_export
def export_torchscript(model, im, file, optimize, prefix=colorstr("TorchScript:")):
"""Exports YOLOv5 model to TorchScript format, optionally optimized for mobile, with image shape and stride
metadata.
"""
LOGGER.info(f"\n{prefix} starting export with torch {torch.__version__}...")
f = file.with_suffix(".torchscript")
ts = torch.jit.trace(model, im, strict=False)
d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
extra_files = {"config.txt": json.dumps(d)} # torch._C.ExtraFilesMap()
if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
else:
ts.save(str(f), _extra_files=extra_files)
return f, None
@try_export
def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr("ONNX:")):
"""Exports a YOLOv5 model to ONNX format with dynamic axes and optional simplification."""
check_requirements("onnx>=1.12.0")
import onnx
LOGGER.info(f"\n{prefix} starting export with onnx {onnx.__version__}...")
f = str(file.with_suffix(".onnx"))
output_names = ["output0", "output1"] if isinstance(model, SegmentationModel) else ["output0"]
if dynamic:
dynamic = {"images": {0: "batch", 2: "height", 3: "width"}} # shape(1,3,640,640)
if isinstance(model, SegmentationModel):
dynamic["output0"] = {0: "batch", 1: "anchors"} # shape(1,25200,85)
dynamic["output1"] = {0: "batch", 2: "mask_height", 3: "mask_width"} # shape(1,32,160,160)
elif isinstance(model, DetectionModel):
dynamic["output0"] = {0: "batch", 1: "anchors"} # shape(1,25200,85)
torch.onnx.export(
model.cpu() if dynamic else model, # --dynamic only compatible with cpu
im.cpu() if dynamic else im,
f,
verbose=False,
opset_version=opset,
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
input_names=["images"],
output_names=output_names,
dynamic_axes=dynamic or None,
)
# Checks
model_onnx = onnx.load(f) # load onnx model
onnx.checker.check_model(model_onnx) # check onnx model
# Metadata
d = {"stride": int(max(model.stride)), "names": model.names}
for k, v in d.items():
meta = model_onnx.metadata_props.add()
meta.key, meta.value = k, str(v)
onnx.save(model_onnx, f)
# Simplify
if simplify:
try:
cuda = torch.cuda.is_available()
check_requirements(("onnxruntime-gpu" if cuda else "onnxruntime", "onnx-simplifier>=0.4.1"))
import onnxsim
LOGGER.info(f"{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...")
model_onnx, check = onnxsim.simplify(model_onnx)
assert check, "assert check failed"
onnx.save(model_onnx, f)
except Exception as e:
LOGGER.info(f"{prefix} simplifier failure: {e}")
return f, model_onnx
@try_export
def export_openvino(file, metadata, half, int8, data, prefix=colorstr("OpenVINO:")):
# YOLOv5 OpenVINO export
check_requirements("openvino-dev>=2023.0") # requires openvino-dev: https://pypi.org/project/openvino-dev/
import openvino.runtime as ov # noqa
from openvino.tools import mo # noqa
LOGGER.info(f"\n{prefix} starting export with openvino {ov.__version__}...")
f = str(file).replace(file.suffix, f"_{'int8_' if int8 else ''}openvino_model{os.sep}")
f_onnx = file.with_suffix(".onnx")
f_ov = str(Path(f) / file.with_suffix(".xml").name)
ov_model = mo.convert_model(f_onnx, model_name=file.stem, framework="onnx", compress_to_fp16=half) # export
if int8:
check_requirements("nncf>=2.5.0") # requires at least version 2.5.0 to use the post-training quantization
import nncf
import numpy as np
from utils.dataloaders import create_dataloader
def gen_dataloader(yaml_path, task="train", imgsz=640, workers=4):
data_yaml = check_yaml(yaml_path)
data = check_dataset(data_yaml)
dataloader = create_dataloader(
data[task], imgsz=imgsz, batch_size=1, stride=32, pad=0.5, single_cls=False, rect=False, workers=workers
)[0]
return dataloader
# noqa: F811
def transform_fn(data_item):
"""
Quantization transform function.
Extracts and preprocess input data from dataloader item for quantization.
Parameters:
data_item: Tuple with data item produced by DataLoader during iteration
Returns:
input_tensor: Input data for quantization
"""
assert data_item[0].dtype == torch.uint8, "input image must be uint8 for the quantization preprocessing"
img = data_item[0].numpy().astype(np.float32) # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
return np.expand_dims(img, 0) if img.ndim == 3 else img
ds = gen_dataloader(data)
quantization_dataset = nncf.Dataset(ds, transform_fn)
ov_model = nncf.quantize(ov_model, quantization_dataset, preset=nncf.QuantizationPreset.MIXED)
ov.serialize(ov_model, f_ov) # save
yaml_save(Path(f) / file.with_suffix(".yaml").name, metadata) # add metadata.yaml
return f, None
@try_export
def export_paddle(model, im, file, metadata, prefix=colorstr("PaddlePaddle:")):
"""Exports a YOLOv5 model to PaddlePaddle format using X2Paddle, saving to `save_dir` and adding a metadata.yaml
file.
"""
check_requirements(("paddlepaddle", "x2paddle"))
import x2paddle
from x2paddle.convert import pytorch2paddle
LOGGER.info(f"\n{prefix} starting export with X2Paddle {x2paddle.__version__}...")
f = str(file).replace(".pt", f"_paddle_model{os.sep}")
pytorch2paddle(module=model, save_dir=f, jit_type="trace", input_examples=[im]) # export
yaml_save(Path(f) / file.with_suffix(".yaml").name, metadata) # add metadata.yaml
return f, None
@try_export
def export_coreml(model, im, file, int8, half, nms, prefix=colorstr("CoreML:")):
"""Exports YOLOv5 model to CoreML format with optional NMS, INT8, and FP16 support; requires coremltools."""
check_requirements("coremltools")
import coremltools as ct
LOGGER.info(f"\n{prefix} starting export with coremltools {ct.__version__}...")
f = file.with_suffix(".mlmodel")
if nms:
model = iOSModel(model, im)
ts = torch.jit.trace(model, im, strict=False) # TorchScript model
ct_model = ct.convert(ts, inputs=[ct.ImageType("image", shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
bits, mode = (8, "kmeans_lut") if int8 else (16, "linear") if half else (32, None)
if bits < 32:
if MACOS: # quantization only supported on macOS
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
else:
print(f"{prefix} quantization only supported on macOS, skipping...")
ct_model.save(f)
return f, ct_model
@try_export
def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr("TensorRT:")):
"""
Exports a YOLOv5 model to TensorRT engine format, requiring GPU and TensorRT>=7.0.0.
https://developer.nvidia.com/tensorrt
"""
assert im.device.type != "cpu", "export running on CPU but must be on GPU, i.e. `python export.py --device 0`"
try:
import tensorrt as trt
except Exception:
if platform.system() == "Linux":
check_requirements("nvidia-tensorrt", cmds="-U --index-url https://pypi.ngc.nvidia.com")
import tensorrt as trt
if trt.__version__[0] == "7": # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
grid = model.model[-1].anchor_grid
model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
model.model[-1].anchor_grid = grid
else: # TensorRT >= 8
check_version(trt.__version__, "8.0.0", hard=True) # require tensorrt>=8.0.0
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
onnx = file.with_suffix(".onnx")
LOGGER.info(f"\n{prefix} starting export with TensorRT {trt.__version__}...")
assert onnx.exists(), f"failed to export ONNX file: {onnx}"
f = file.with_suffix(".engine") # TensorRT engine file
logger = trt.Logger(trt.Logger.INFO)
if verbose:
logger.min_severity = trt.Logger.Severity.VERBOSE
builder = trt.Builder(logger)
config = builder.create_builder_config()
config.max_workspace_size = workspace * 1 << 30
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
network = builder.create_network(flag)
parser = trt.OnnxParser(network, logger)
if not parser.parse_from_file(str(onnx)):
raise RuntimeError(f"failed to load ONNX file: {onnx}")
inputs = [network.get_input(i) for i in range(network.num_inputs)]
outputs = [network.get_output(i) for i in range(network.num_outputs)]
for inp in inputs:
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
for out in outputs:
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
if dynamic:
if im.shape[0] <= 1:
LOGGER.warning(f"{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument")
profile = builder.create_optimization_profile()
for inp in inputs:
profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
config.add_optimization_profile(profile)
LOGGER.info(f"{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}")
if builder.platform_has_fast_fp16 and half:
config.set_flag(trt.BuilderFlag.FP16)
with builder.build_engine(network, config) as engine, open(f, "wb") as t:
t.write(engine.serialize())
return f, None
@try_export
def export_saved_model(
model,
im,
file,
dynamic,
tf_nms=False,
agnostic_nms=False,
topk_per_class=100,
topk_all=100,
iou_thres=0.45,
conf_thres=0.25,
keras=False,
prefix=colorstr("TensorFlow SavedModel:"),
):
# YOLOv5 TensorFlow SavedModel export
try:
import tensorflow as tf
except Exception:
check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}<=2.15.1")
import tensorflow as tf
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
from models.tf import TFModel
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
if tf.__version__ > "2.13.1":
helper_url = "https://github.com/ultralytics/yolov5/issues/12489"
LOGGER.info(
f"WARNING ⚠️ using Tensorflow {tf.__version__} > 2.13.1 might cause issue when exporting the model to tflite {helper_url}"
) # handling issue https://github.com/ultralytics/yolov5/issues/12489
f = str(file).replace(".pt", "_saved_model")
batch_size, ch, *imgsz = list(im.shape) # BCHW
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
_ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
keras_model.trainable = False
keras_model.summary()
if keras:
keras_model.save(f, save_format="tf")
else:
spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
m = tf.function(lambda x: keras_model(x)) # full model
m = m.get_concrete_function(spec)
frozen_func = convert_variables_to_constants_v2(m)
tfm = tf.Module()
tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec])
tfm.__call__(im)
tf.saved_model.save(
tfm,
f,
options=tf.saved_model.SaveOptions(experimental_custom_gradients=False)
if check_version(tf.__version__, "2.6")
else tf.saved_model.SaveOptions(),
)
return f, keras_model
@try_export
def export_pb(keras_model, file, prefix=colorstr("TensorFlow GraphDef:")):
"""Exports YOLOv5 model to TensorFlow GraphDef *.pb format; see https://github.com/leimao/Frozen_Graph_TensorFlow for details."""
import tensorflow as tf
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
f = file.with_suffix(".pb")
m = tf.function(lambda x: keras_model(x)) # full model
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
frozen_func = convert_variables_to_constants_v2(m)
frozen_func.graph.as_graph_def()
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
return f, None
@try_export
def export_tflite(
keras_model, im, file, int8, per_tensor, data, nms, agnostic_nms, prefix=colorstr("TensorFlow Lite:")
):
# YOLOv5 TensorFlow Lite export
import tensorflow as tf
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
batch_size, ch, *imgsz = list(im.shape) # BCHW
f = str(file).replace(".pt", "-fp16.tflite")
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
converter.target_spec.supported_types = [tf.float16]
converter.optimizations = [tf.lite.Optimize.DEFAULT]
if int8:
from models.tf import representative_dataset_gen
dataset = LoadImages(check_dataset(check_yaml(data))["train"], img_size=imgsz, auto=False)
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.target_spec.supported_types = []
converter.inference_input_type = tf.uint8 # or tf.int8
converter.inference_output_type = tf.uint8 # or tf.int8
converter.experimental_new_quantizer = True
if per_tensor:
converter._experimental_disable_per_channel = True
f = str(file).replace(".pt", "-int8.tflite")
if nms or agnostic_nms:
converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
tflite_model = converter.convert()
open(f, "wb").write(tflite_model)
return f, None
@try_export
def export_edgetpu(file, prefix=colorstr("Edge TPU:")):
"""
Exports a YOLOv5 model to Edge TPU compatible TFLite format; requires Linux and Edge TPU compiler.
https://coral.ai/docs/edgetpu/models-intro/
"""
cmd = "edgetpu_compiler --version"
help_url = "https://coral.ai/docs/edgetpu/compiler/"
assert platform.system() == "Linux", f"export only supported on Linux. See {help_url}"
if subprocess.run(f"{cmd} > /dev/null 2>&1", shell=True).returncode != 0:
LOGGER.info(f"\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}")
sudo = subprocess.run("sudo --version >/dev/null", shell=True).returncode == 0 # sudo installed on system
for c in (
"curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -",
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
"sudo apt-get update",
"sudo apt-get install edgetpu-compiler",
):
subprocess.run(c if sudo else c.replace("sudo ", ""), shell=True, check=True)
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
LOGGER.info(f"\n{prefix} starting export with Edge TPU compiler {ver}...")
f = str(file).replace(".pt", "-int8_edgetpu.tflite") # Edge TPU model
f_tfl = str(file).replace(".pt", "-int8.tflite") # TFLite model
subprocess.run(
[
"edgetpu_compiler",
"-s",
"-d",
"-k",
"10",
"--out_dir",
str(file.parent),
f_tfl,
],
check=True,
)
return f, None
@try_export
def export_tfjs(file, int8, prefix=colorstr("TensorFlow.js:")):
"""Exports a YOLOv5 model to TensorFlow.js format, optionally with uint8 quantization."""
check_requirements("tensorflowjs")
import tensorflowjs as tfjs
LOGGER.info(f"\n{prefix} starting export with tensorflowjs {tfjs.__version__}...")
f = str(file).replace(".pt", "_web_model") # js dir
f_pb = file.with_suffix(".pb") # *.pb path
f_json = f"{f}/model.json" # *.json path
args = [
"tensorflowjs_converter",
"--input_format=tf_frozen_model",
"--quantize_uint8" if int8 else "",
"--output_node_names=Identity,Identity_1,Identity_2,Identity_3",
str(f_pb),
f,
]
subprocess.run([arg for arg in args if arg], check=True)
json = Path(f_json).read_text()
with open(f_json, "w") as j: # sort JSON Identity_* in ascending order
subst = re.sub(
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
r'"Identity.?.?": {"name": "Identity.?.?"}, '
r'"Identity.?.?": {"name": "Identity.?.?"}, '
r'"Identity.?.?": {"name": "Identity.?.?"}}}',
r'{"outputs": {"Identity": {"name": "Identity"}, '
r'"Identity_1": {"name": "Identity_1"}, '
r'"Identity_2": {"name": "Identity_2"}, '
r'"Identity_3": {"name": "Identity_3"}}}',
json,
)
j.write(subst)
return f, None
def add_tflite_metadata(file, metadata, num_outputs):
"""
Adds TFLite metadata to a model file, supporting multiple outputs, as specified by TensorFlow guidelines.
https://www.tensorflow.org/lite/models/convert/metadata
"""
with contextlib.suppress(ImportError):
# check_requirements('tflite_support')
from tflite_support import flatbuffers
from tflite_support import metadata as _metadata
from tflite_support import metadata_schema_py_generated as _metadata_fb
tmp_file = Path("/tmp/meta.txt")
with open(tmp_file, "w") as meta_f:
meta_f.write(str(metadata))
model_meta = _metadata_fb.ModelMetadataT()
label_file = _metadata_fb.AssociatedFileT()
label_file.name = tmp_file.name
model_meta.associatedFiles = [label_file]
subgraph = _metadata_fb.SubGraphMetadataT()
subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()]
subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs
model_meta.subgraphMetadata = [subgraph]
b = flatbuffers.Builder(0)
b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
metadata_buf = b.Output()
populator = _metadata.MetadataPopulator.with_model_file(file)
populator.load_metadata_buffer(metadata_buf)
populator.load_associated_files([str(tmp_file)])
populator.populate()
tmp_file.unlink()
def pipeline_coreml(model, im, file, names, y, prefix=colorstr("CoreML Pipeline:")):
"""Converts a PyTorch YOLOv5 model to CoreML format with NMS, handling different input/output shapes and saving the
model.
"""
import coremltools as ct
from PIL import Image
print(f"{prefix} starting pipeline with coremltools {ct.__version__}...")
batch_size, ch, h, w = list(im.shape) # BCHW
t = time.time()
# YOLOv5 Output shapes
spec = model.get_spec()
out0, out1 = iter(spec.description.output)
if platform.system() == "Darwin":
img = Image.new("RGB", (w, h)) # img(192 width, 320 height)
# img = torch.zeros((*opt.img_size, 3)).numpy() # img size(320,192,3) iDetection
out = model.predict({"image": img})
out0_shape, out1_shape = out[out0.name].shape, out[out1.name].shape
else: # linux and windows can not run model.predict(), get sizes from pytorch output y
s = tuple(y[0].shape)
out0_shape, out1_shape = (s[1], s[2] - 5), (s[1], 4) # (3780, 80), (3780, 4)
# Checks
nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height
na, nc = out0_shape
# na, nc = out0.type.multiArrayType.shape # number anchors, classes
assert len(names) == nc, f"{len(names)} names found for nc={nc}" # check
# Define output shapes (missing)
out0.type.multiArrayType.shape[:] = out0_shape # (3780, 80)
out1.type.multiArrayType.shape[:] = out1_shape # (3780, 4)
# spec.neuralNetwork.preprocessing[0].featureName = '0'
# Flexible input shapes
# from coremltools.models.neural_network import flexible_shape_utils
# s = [] # shapes
# s.append(flexible_shape_utils.NeuralNetworkImageSize(320, 192))
# s.append(flexible_shape_utils.NeuralNetworkImageSize(640, 384)) # (height, width)
# flexible_shape_utils.add_enumerated_image_sizes(spec, feature_name='image', sizes=s)
# r = flexible_shape_utils.NeuralNetworkImageSizeRange() # shape ranges
# r.add_height_range((192, 640))
# r.add_width_range((192, 640))
# flexible_shape_utils.update_image_size_range(spec, feature_name='image', size_range=r)
# Print
print(spec.description)
# Model from spec
model = ct.models.MLModel(spec)
# 3. Create NMS protobuf
nms_spec = ct.proto.Model_pb2.Model()
nms_spec.specificationVersion = 5
for i in range(2):
decoder_output = model._spec.description.output[i].SerializeToString()
nms_spec.description.input.add()
nms_spec.description.input[i].ParseFromString(decoder_output)
nms_spec.description.output.add()
nms_spec.description.output[i].ParseFromString(decoder_output)
nms_spec.description.output[0].name = "confidence"
nms_spec.description.output[1].name = "coordinates"
output_sizes = [nc, 4]
for i in range(2):
ma_type = nms_spec.description.output[i].type.multiArrayType
ma_type.shapeRange.sizeRanges.add()
ma_type.shapeRange.sizeRanges[0].lowerBound = 0
ma_type.shapeRange.sizeRanges[0].upperBound = -1
ma_type.shapeRange.sizeRanges.add()
ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i]
ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i]
del ma_type.shape[:]
nms = nms_spec.nonMaximumSuppression
nms.confidenceInputFeatureName = out0.name # 1x507x80
nms.coordinatesInputFeatureName = out1.name # 1x507x4
nms.confidenceOutputFeatureName = "confidence"
nms.coordinatesOutputFeatureName = "coordinates"
nms.iouThresholdInputFeatureName = "iouThreshold"
nms.confidenceThresholdInputFeatureName = "confidenceThreshold"
nms.iouThreshold = 0.45
nms.confidenceThreshold = 0.25
nms.pickTop.perClass = True
nms.stringClassLabels.vector.extend(names.values())
nms_model = ct.models.MLModel(nms_spec)
# 4. Pipeline models together
pipeline = ct.models.pipeline.Pipeline(
input_features=[
("image", ct.models.datatypes.Array(3, ny, nx)),
("iouThreshold", ct.models.datatypes.Double()),
("confidenceThreshold", ct.models.datatypes.Double()),
],
output_features=["confidence", "coordinates"],
)
pipeline.add_model(model)
pipeline.add_model(nms_model)
# Correct datatypes
pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString())
pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString())
pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString())
# Update metadata
pipeline.spec.specificationVersion = 5
pipeline.spec.description.metadata.versionString = "https://github.com/ultralytics/yolov5"
pipeline.spec.description.metadata.shortDescription = "https://github.com/ultralytics/yolov5"
pipeline.spec.description.metadata.author = "glenn.jocher@ultralytics.com"
pipeline.spec.description.metadata.license = "https://github.com/ultralytics/yolov5/blob/master/LICENSE"
pipeline.spec.description.metadata.userDefined.update(
{
"classes": ",".join(names.values()),
"iou_threshold": str(nms.iouThreshold),
"confidence_threshold": str(nms.confidenceThreshold),
}
)
# Save the model
f = file.with_suffix(".mlmodel") # filename
model = ct.models.MLModel(pipeline.spec)
model.input_description["image"] = "Input image"
model.input_description["iouThreshold"] = f"(optional) IOU Threshold override (default: {nms.iouThreshold})"
model.input_description["confidenceThreshold"] = (
f"(optional) Confidence Threshold override (default: {nms.confidenceThreshold})"
)
model.output_description["confidence"] = 'Boxes × Class confidence (see user-defined metadata "classes")'
model.output_description["coordinates"] = "Boxes × [x, y, width, height] (relative to image size)"
model.save(f) # pipelined
print(f"{prefix} pipeline success ({time.time() - t:.2f}s), saved as {f} ({file_size(f):.1f} MB)")
@smart_inference_mode()
def run(
data=ROOT / "data/coco128.yaml", # 'dataset.yaml path'
weights=ROOT / "yolov5s.pt", # weights path
imgsz=(640, 640), # image (height, width)
batch_size=1, # batch size
device="cpu", # cuda device, i.e. 0 or 0,1,2,3 or cpu
include=("torchscript", "onnx"), # include formats
half=False, # FP16 half-precision export
inplace=False, # set YOLOv5 Detect() inplace=True
keras=False, # use Keras
optimize=False, # TorchScript: optimize for mobile
int8=False, # CoreML/TF INT8 quantization
per_tensor=False, # TF per tensor quantization
dynamic=False, # ONNX/TF/TensorRT: dynamic axes
simplify=False, # ONNX: simplify model
opset=12, # ONNX: opset version
verbose=False, # TensorRT: verbose log
workspace=4, # TensorRT: workspace size (GB)
nms=False, # TF: add NMS to model
agnostic_nms=False, # TF: add agnostic NMS to model
topk_per_class=100, # TF.js NMS: topk per class to keep
topk_all=100, # TF.js NMS: topk for all classes to keep
iou_thres=0.45, # TF.js NMS: IoU threshold
conf_thres=0.25, # TF.js NMS: confidence threshold
):
t = time.time()
include = [x.lower() for x in include] # to lowercase
fmts = tuple(export_formats()["Argument"][1:]) # --include arguments
flags = [x in include for x in fmts]
assert sum(flags) == len(include), f"ERROR: Invalid --include {include}, valid --include arguments are {fmts}"
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans
file = Path(url2file(weights) if str(weights).startswith(("http:/", "https:/")) else weights) # PyTorch weights
# Load PyTorch model
device = select_device(device)
if half:
assert device.type != "cpu" or coreml, "--half only compatible with GPU export, i.e. use --device 0"
assert not dynamic, "--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both"
model = attempt_load(weights, device=device, inplace=True, fuse=True) # load FP32 model
# Checks
imgsz *= 2 if len(imgsz) == 1 else 1 # expand
if optimize:
assert device.type == "cpu", "--optimize not compatible with cuda devices, i.e. use --device cpu"
# Input
gs = int(max(model.stride)) # grid size (max stride)
imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
# Update model
model.eval()
for k, m in model.named_modules():
if isinstance(m, Detect):
m.inplace = inplace
m.dynamic = dynamic
m.export = True
for _ in range(2):
y = model(im) # dry runs
if half and not coreml:
im, model = im.half(), model.half() # to FP16
shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape
metadata = {"stride": int(max(model.stride)), "names": model.names} # model metadata
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
# Exports
f = [""] * len(fmts) # exported filenames
warnings.filterwarnings(action="ignore", category=torch.jit.TracerWarning) # suppress TracerWarning
if jit: # TorchScript
f[0], _ = export_torchscript(model, im, file, optimize)
if engine: # TensorRT required before ONNX
f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose)
if onnx or xml: # OpenVINO requires ONNX
f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify)
if xml: # OpenVINO
f[3], _ = export_openvino(file, metadata, half, int8, data)
if coreml: # CoreML
f[4], ct_model = export_coreml(model, im, file, int8, half, nms)
if nms:
pipeline_coreml(ct_model, im, file, model.names, y)
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
assert not tflite or not tfjs, "TFLite and TF.js models must be exported separately, please pass only one type."
assert not isinstance(model, ClassificationModel), "ClassificationModel export to TF formats not yet supported."
f[5], s_model = export_saved_model(
model.cpu(),
im,
file,
dynamic,
tf_nms=nms or agnostic_nms or tfjs,
agnostic_nms=agnostic_nms or tfjs,
topk_per_class=topk_per_class,
topk_all=topk_all,
iou_thres=iou_thres,
conf_thres=conf_thres,
keras=keras,
)
if pb or tfjs: # pb prerequisite to tfjs
f[6], _ = export_pb(s_model, file)
if tflite or edgetpu:
f[7], _ = export_tflite(
s_model, im, file, int8 or edgetpu, per_tensor, data=data, nms=nms, agnostic_nms=agnostic_nms
)
if edgetpu:
f[8], _ = export_edgetpu(file)
add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs))
if tfjs:
f[9], _ = export_tfjs(file, int8)
if paddle: # PaddlePaddle
f[10], _ = export_paddle(model, im, file, metadata)
# Finish
f = [str(x) for x in f if x] # filter out '' and None
if any(f):
cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel)) # type
det &= not seg # segmentation models inherit from SegmentationModel(DetectionModel)
dir = Path("segment" if seg else "classify" if cls else "")
h = "--half" if half else "" # --half FP16 inference arg
s = (
"# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference"
if cls
else "# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference"
if seg
else ""
)
LOGGER.info(
f'\nExport complete ({time.time() - t:.1f}s)'
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
f"\nDetect: python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}"
f"\nValidate: python {dir / 'val.py'} --weights {f[-1]} {h}"
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}') {s}"
f'\nVisualize: https://netron.app'
)
return f # return list of exported files/dirs
def parse_opt(known=False):
"""Parses command-line arguments for YOLOv5 model export configurations, returning the parsed options."""
parser = argparse.ArgumentParser()
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model.pt path(s)")
parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640, 640], help="image (h, w)")
parser.add_argument("--batch-size", type=int, default=1, help="batch size")
parser.add_argument("--device", default="cpu", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
parser.add_argument("--half", action="store_true", help="FP16 half-precision export")
parser.add_argument("--inplace", action="store_true", help="set YOLOv5 Detect() inplace=True")
parser.add_argument("--keras", action="store_true", help="TF: use Keras")
parser.add_argument("--optimize", action="store_true", help="TorchScript: optimize for mobile")
parser.add_argument("--int8", action="store_true", help="CoreML/TF/OpenVINO INT8 quantization")
parser.add_argument("--per-tensor", action="store_true", help="TF per-tensor quantization")
parser.add_argument("--dynamic", action="store_true", help="ONNX/TF/TensorRT: dynamic axes")
parser.add_argument("--simplify", action="store_true", help="ONNX: simplify model")
parser.add_argument("--opset", type=int, default=17, help="ONNX: opset version")
parser.add_argument("--verbose", action="store_true", help="TensorRT: verbose log")
parser.add_argument("--workspace", type=int, default=4, help="TensorRT: workspace size (GB)")
parser.add_argument("--nms", action="store_true", help="TF: add NMS to model")
parser.add_argument("--agnostic-nms", action="store_true", help="TF: add agnostic NMS to model")
parser.add_argument("--topk-per-class", type=int, default=100, help="TF.js NMS: topk per class to keep")
parser.add_argument("--topk-all", type=int, default=100, help="TF.js NMS: topk for all classes to keep")
parser.add_argument("--iou-thres", type=float, default=0.45, help="TF.js NMS: IoU threshold")
parser.add_argument("--conf-thres", type=float, default=0.25, help="TF.js NMS: confidence threshold")
parser.add_argument(
"--include",
nargs="+",
default=["torchscript"],
help="torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle",
)
opt = parser.parse_known_args()[0] if known else parser.parse_args()
print_args(vars(opt))
return opt
def main(opt):
"""Executes the YOLOv5 model inference or export with specified weights and options."""
for opt.weights in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。