Fetch the repository succeeded.
This action will force synchronization from PaddlePaddle/PaddleDetection, which will overwrite any changes that you have made since you forked the repository, and can not be recovered!!!
Synchronous operation will process in the background and will refresh the page when finishing processing. Please be patient.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn.functional as F
import paddle.nn as nn
from ppdet.core.workspace import register
from ..shape_spec import ShapeSpec
__all__ = ['HRFPN']
@register
class HRFPN(nn.Layer):
"""
Args:
in_channels (list): number of input feature channels from backbone
out_channel (int): number of output feature channels
share_conv (bool): whether to share conv for different layers' reduction
extra_stage (int): add extra stage for returning HRFPN fpn_feats
spatial_scales (list): feature map scaling factor
"""
def __init__(self,
in_channels=[18, 36, 72, 144],
out_channel=256,
share_conv=False,
extra_stage=1,
spatial_scales=[1. / 4, 1. / 8, 1. / 16, 1. / 32],
use_bias=False):
super(HRFPN, self).__init__()
in_channel = sum(in_channels)
self.in_channel = in_channel
self.out_channel = out_channel
self.share_conv = share_conv
for i in range(extra_stage):
spatial_scales = spatial_scales + [spatial_scales[-1] / 2.]
self.spatial_scales = spatial_scales
self.num_out = len(self.spatial_scales)
self.use_bias = use_bias
bias_attr = False if use_bias is False else None
self.reduction = nn.Conv2D(
in_channels=in_channel,
out_channels=out_channel,
kernel_size=1,
bias_attr=bias_attr)
if share_conv:
self.fpn_conv = nn.Conv2D(
in_channels=out_channel,
out_channels=out_channel,
kernel_size=3,
padding=1,
bias_attr=bias_attr)
else:
self.fpn_conv = []
for i in range(self.num_out):
conv_name = "fpn_conv_" + str(i)
conv = self.add_sublayer(
conv_name,
nn.Conv2D(
in_channels=out_channel,
out_channels=out_channel,
kernel_size=3,
padding=1,
bias_attr=bias_attr))
self.fpn_conv.append(conv)
def forward(self, body_feats):
num_backbone_stages = len(body_feats)
outs = []
outs.append(body_feats[0])
# resize
for i in range(1, num_backbone_stages):
resized = F.interpolate(
body_feats[i], scale_factor=2**i, mode='bilinear')
outs.append(resized)
# concat
out = paddle.concat(outs, axis=1)
assert out.shape[
1] == self.in_channel, 'in_channel should be {}, be received {}'.format(
out.shape[1], self.in_channel)
# reduction
out = self.reduction(out)
# conv
outs = [out]
for i in range(1, self.num_out):
outs.append(F.avg_pool2d(out, kernel_size=2**i, stride=2**i))
outputs = []
for i in range(self.num_out):
conv_func = self.fpn_conv if self.share_conv else self.fpn_conv[i]
conv = conv_func(outs[i])
outputs.append(conv)
fpn_feats = [outputs[k] for k in range(self.num_out)]
return fpn_feats
@classmethod
def from_config(cls, cfg, input_shape):
return {
'in_channels': [i.channels for i in input_shape],
'spatial_scales': [1.0 / i.stride for i in input_shape],
}
@property
def out_shape(self):
return [
ShapeSpec(
channels=self.out_channel, stride=1. / s)
for s in self.spatial_scales
]
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。