代码拉取完成,页面将自动刷新
import random
import numpy as np
import cv2
import torch
from torchvision import transforms
class Augment:
def __init__(self, opt):
self.opt = opt
self.psize = self.opt.img_size
self.size = (self.psize, self.psize)
self.norm = transforms.Normalize(mean=(0.485, 0.458, 0.407),
std=(0.229, 0.224, 0.225))
def norm(self, x):
return self.norm(x)
def to_tensor(self, x):
# x is np array
tensor = torch.from_numpy(x).float()
return tensor
def resize(self, IMG):
resize_IMG = cv2.resize(IMG, (self.psize, self.psize), interpolation=cv2.INTER_LINEAR)
return resize_IMG.copy()
def crop(self, MASK, IMG):
dice = random.random()
h, w = IMG.shape[:-1]
if dice < .1 and w > self.psize and h > self.psize:
new_h = random.randrange(0, h - self.psize)
new_w = random.randrange(0, w - self.psize)
crop_MASK = MASK[new_h:new_h + self.psize, new_w:new_w + self.psize]
crop_IMG = IMG[new_h:new_h + self.psize, new_w:new_w + self.psize, :]
else:
crop_IMG = cv2.resize(IMG, (self.psize, self.psize), interpolation=cv2.INTER_LINEAR)
crop_MASK = cv2.resize(MASK, (self.psize, self.psize), interpolation=cv2.INTER_LINEAR)
crop_MASK = (np.array(crop_MASK) > 127).astype(np.float64)
return crop_MASK.copy(), crop_IMG.copy()
def gen_ctr(self, IMG, kernel_size=5):
# gen contour for numpy based array
kernel = np.ones((kernel_size, kernel_size))
C = cv2.dilate(IMG, kernel) - cv2.erode(IMG, kernel)
return C
def flip_and_rotate(self, MASK, IMG):
# h,w,c
hflip = random.random() < 0.5
# vflip = random.random() < 0.5
rot90 = random.random() < 0.5
if hflip:
MASK, IMG = MASK[:, ::-1], IMG[:, ::-1, :]
# if vflip:
# MASK, IMG = MASK[::-1, :], IMG[::-1, :, :]
if rot90:
MASK, IMG = MASK.transpose(1, 0), IMG.transpose(1, 0, 2)
return MASK.copy(), IMG.copy()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。