代码拉取完成,页面将自动刷新
同步操作将从 PaddlePaddle/PaddleNLP 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import random
import time
from decimal import Decimal
import numpy as np
import paddle
from tqdm import tqdm
from paddlenlp.utils.log import logger
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--doccano_file", default="doccano.jsonl", type=str, help="The doccano file exported from doccano platform.")
parser.add_argument("--save_dir", default="./data", type=str, help="The path of data that you wanna save.")
parser.add_argument("--splits", default=[0.8, 0.2], type=float, nargs="*", help="The ratio of samples in datasets. [0.8, 0.2] means 80% samples used for training, 20% for evaluation.")
parser.add_argument("--task_type", choices=['multi_class', 'multi_label', 'hierarchical'], default="multi_label", type=str, help="Select task type, multi_class for multi classification task, multi_label for multi label classification task and hierarchical for hierarchical classification, defaults to multi_label.")
parser.add_argument("--is_shuffle", default=True, type=bool, help="Whether to shuffle the labeled dataset, defaults to True.")
parser.add_argument("--seed", type=int, default=3, help="Random seed for initialization")
parser.add_argument("--separator", type=str, default="##", help="Separator for hierarchical classification")
parser.add_argument("--valid", action='store_true', help="Whether annotate valid data(extracted from sparse strategy)")
parser.add_argument("--dirty", action='store_true', help="Whether annotate dirty data(extracted from dirty data cleaning strategy)")
args = parser.parse_args()
# yapf: enable
def set_seed(seed):
"""
Set random seed
"""
paddle.seed(seed)
random.seed(seed)
np.random.seed(seed)
def do_convert():
"""
Convert doccano jsonl to fixed format
"""
set_seed(args.seed)
tic_time = time.time()
if not os.path.exists(args.doccano_file):
raise ValueError("Please input the correct path of doccano file.")
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
if len(args.splits) != 1 and len(args.splits) != 2 and len(args.splits) != 3:
raise ValueError("Only len(splits)==1 /len(splits)==2 / len(splits)==3 accepted for splits.")
def _check_sum(splits):
if len(splits) == 2:
return Decimal(str(splits[0])) + Decimal(str(splits[1])) == Decimal("1")
if len(splits) == 3:
return Decimal(str(splits[0])) + Decimal(str(splits[1])) + Decimal(str(splits[2])) == Decimal("1")
if not _check_sum(args.splits):
raise ValueError("Please set correct splits, sum of elements in splits should be equal to 1.")
with open(args.doccano_file, "r", encoding="utf-8") as f:
raw_examples = f.readlines()
f.close()
examples = []
label_list = []
with tqdm(total=len(raw_examples)):
for line in raw_examples:
items = json.loads(line)
# Compatible with doccano >= 1.6.2
if "data" in items.keys():
text, labels = items["data"], items["label"]
else:
text, labels = items["text"], items["label"]
labels = list(set(labels))
for l in labels:
if "," in l:
raise ValueError("There exists comma ',' in {}".format(l))
if args.task_type == "multi_label" or args.task_type == "multi_class":
if args.dirty:
text = " ".join(text.strip().split("\t")[:-1])
else:
text = " ".join(text.strip().split("\t"))
example = text + "\t" + ",".join(labels) + "\n"
for l in labels:
if l not in label_list:
label_list.append(l)
if args.task_type == "hierarchical":
label_dict = []
for label in labels:
level_labels = label.split(args.separator)
for i in range(len(level_labels)):
l = args.separator.join(level_labels[: i + 1])
if l not in label_dict:
label_dict.append(l)
if l not in label_list:
label_list.append(l)
if args.dirty:
text = " ".join(text.strip().split("\t")[:-1])
else:
text = " ".join(text.strip().split("\t"))
example = text + "\t" + ",".join(label_dict) + "\n"
examples.append(example)
if not args.dirty and not args.valid:
save_path = os.path.join(args.save_dir, "label.txt")
with open(save_path, "w", encoding="utf-8") as f:
label_list = sorted(label_list)
for l in label_list:
f.write(l + "\n")
def _save_examples(save_dir, file_name, examples, is_data=False):
count = 0
save_path = os.path.join(save_dir, file_name)
with open(save_path, "w", encoding="utf-8") as f:
for example in examples:
if is_data:
f.write(example.split("\t")[0] + "\n")
else:
f.write(example)
count += 1
logger.info("Save %d examples to %s." % (count, save_path))
if args.is_shuffle:
indexes = np.random.permutation(len(raw_examples))
raw_examples = [raw_examples[i] for i in indexes]
if len(args.splits) == 1:
if args.valid:
_save_examples(args.save_dir, "valid.txt", examples)
elif args.dirty:
_save_examples(args.save_dir, "train_dirty.txt", examples)
else:
_save_examples(args.save_dir, "train.txt", examples)
_save_examples(args.save_dir, "data.txt", examples, True)
elif len(args.splits) == 2:
i1, _ = args.splits
p1 = int(len(raw_examples) * i1)
_save_examples(args.save_dir, "train.txt", examples[:p1])
_save_examples(args.save_dir, "dev.txt", examples[p1:])
_save_examples(args.save_dir, "data.txt", examples[p1:], True)
elif len(args.splits) == 3:
i1, i2, _ = args.splits
p1 = int(len(raw_examples) * i1)
p2 = int(len(raw_examples) * (i1 + i2))
_save_examples(args.save_dir, "train.txt", examples[:p1])
_save_examples(args.save_dir, "dev.txt", examples[p1:p2])
_save_examples(args.save_dir, "test.txt", examples[p2:])
_save_examples(args.save_dir, "data.txt", examples[p2:], True)
logger.info("Finished! It takes %.2f seconds" % (time.time() - tic_time))
if __name__ == "__main__":
do_convert()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。