代码拉取完成,页面将自动刷新
# Copyright 2025 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, List, Literal, overload, Sequence
from jax._src.core import AxisName
from jax._src.cudnn.scaled_matmul_stablehlo import BlockScaleConfig
from jax._src.lax.lax import DotDimensionNumbers
from jax._src.typing import Array, ArrayLike, DTypeLike
from jax.nn import initializers as initializers
Axis = int | Sequence[int] | None
def celu(x: ArrayLike, alpha: ArrayLike = ...) -> Array: ...
@overload
def dot_product_attention(
query: ArrayLike,
key: ArrayLike,
value: ArrayLike,
bias: ArrayLike | None = ...,
mask: ArrayLike | None = ...,
*,
scale: float | None = ...,
is_causal: bool = ...,
query_seq_lengths: ArrayLike | None = ...,
key_value_seq_lengths: ArrayLike | None = ...,
local_window_size: int | tuple[int, int] | None = ...,
implementation: Literal['xla', 'cudnn'] | None = ...,
return_residual: Literal[False] = ...,
) -> Array: ...
@overload
def dot_product_attention(
query: ArrayLike,
key: ArrayLike,
value: ArrayLike,
bias: ArrayLike | None = ...,
mask: ArrayLike | None = ...,
*,
scale: float | None = ...,
is_causal: bool = ...,
query_seq_lengths: ArrayLike | None = ...,
key_value_seq_lengths: ArrayLike | None = ...,
local_window_size: int | tuple[int, int] | None = ...,
implementation: Literal['xla', 'cudnn'] | None = ...,
return_residual: Literal[True] = ...,
) -> tuple[Array, Array]: ...
def elu(x: ArrayLike, alpha: ArrayLike = ...) -> Array: ...
def gelu(x: ArrayLike, approximate: bool = ...) -> Array: ...
def get_scaled_dot_general_config(
mode: Literal['nvfp4', 'mxfp8'],
global_scale: Array | None = ...,
) -> BlockScaleConfig: ...
def glu(x: ArrayLike, axis: int = ...) -> Array: ...
def hard_sigmoid(x: ArrayLike) -> Array: ...
def hard_silu(x: ArrayLike) -> Array: ...
def hard_swish(x: ArrayLike) -> Array: ...
def hard_tanh(x: ArrayLike) -> Array: ...
def identity(x: ArrayLike) -> Array: ...
def leaky_relu(x: ArrayLike, negative_slope: ArrayLike = ...) -> Array: ...
def log_sigmoid(x: ArrayLike) -> Array: ...
def log_softmax(
x: ArrayLike,
axis: Axis = ...,
where: ArrayLike | None = ...,
) -> Array: ...
def logmeanexp(
x: ArrayLike,
axis: Axis = None,
where: ArrayLike | None = None,
keepdims: bool = False,
) -> Array: ...
@overload
def logsumexp(
a: ArrayLike,
axis: Axis = ...,
b: ArrayLike | None = ...,
keepdims: bool = ...,
return_sign: Literal[False] = ...,
where: ArrayLike | None = ...,
) -> Array: ...
@overload
def logsumexp(
a: ArrayLike,
axis: Axis = ...,
b: ArrayLike | None = ...,
keepdims: bool = ...,
*,
return_sign: Literal[True],
where: ArrayLike | None = ...,
) -> tuple[Array, Array]: ...
@overload
def logsumexp(
a: ArrayLike,
axis: Axis = ...,
b: ArrayLike | None = ...,
keepdims: bool = ...,
return_sign: bool = ...,
where: ArrayLike | None = ...,
) -> Array | tuple[Array, Array]: ...
def mish(x: ArrayLike) -> Array: ...
def one_hot(
x: Any,
num_classes: int,
*,
dtype: Any = ...,
axis: int | AxisName = ...
) -> Array: ...
def relu(x: ArrayLike) -> Array: ...
def relu6(x: ArrayLike) -> Array: ...
def scaled_dot_general(
lhs: ArrayLike, rhs: ArrayLike,
dimension_numbers: DotDimensionNumbers,
preferred_element_type: DTypeLike = ...,
configs: List[BlockScaleConfig] | None = ...,
implementation: Literal['cudnn'] | None = ...,
) -> Array: ...
def scaled_matmul(
lhs: Array,
rhs: Array,
lhs_scales: Array,
rhs_scales: Array,
preferred_element_type: DTypeLike = ...,
) -> Array: ...
def selu(x: ArrayLike) -> Array: ...
def sigmoid(x: ArrayLike) -> Array: ...
def silu(x: ArrayLike) -> Array: ...
def soft_sign(x: ArrayLike) -> Array: ...
def softmax(
x: ArrayLike,
axis: Axis = ...,
where: ArrayLike | None = ...
) -> Array: ...
def softplus(x: ArrayLike) -> Array: ...
def sparse_plus(x: ArrayLike) -> Array: ...
def sparse_sigmoid(x: ArrayLike) -> Array: ...
def squareplus(x: ArrayLike, b: ArrayLike = ...) -> Array: ...
def standardize(
x: ArrayLike,
axis: Axis = ...,
mean: ArrayLike | None = ...,
variance: ArrayLike | None = ...,
epsilon: ArrayLike = ...,
where: ArrayLike | None = ...
) -> Array: ...
def swish(x: ArrayLike) -> Array: ...
def tanh(x: ArrayLike, /) -> Array: ...
def log1mexp(x: ArrayLike) -> Array: ...
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。