代码拉取完成,页面将自动刷新
/*
Copyright IBM Corp. 2017 All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package sw
import (
"crypto/ecdsa"
"crypto/hmac"
"errors"
"fmt"
"math/big"
"github.com/hyperledger/fabric/bccsp"
)
type ecdsaPublicKeyKeyDeriver struct{}
func (kd *ecdsaPublicKeyKeyDeriver) KeyDeriv(key bccsp.Key, opts bccsp.KeyDerivOpts) (bccsp.Key, error) {
// Validate opts
if opts == nil {
return nil, errors.New("Invalid opts parameter. It must not be nil.")
}
ecdsaK := key.(*ecdsaPublicKey)
// Re-randomized an ECDSA private key
reRandOpts, ok := opts.(*bccsp.ECDSAReRandKeyOpts)
if !ok {
return nil, fmt.Errorf("Unsupported 'KeyDerivOpts' provided [%v]", opts)
}
tempSK := &ecdsa.PublicKey{
Curve: ecdsaK.pubKey.Curve,
X: new(big.Int),
Y: new(big.Int),
}
var k = new(big.Int).SetBytes(reRandOpts.ExpansionValue())
var one = new(big.Int).SetInt64(1)
n := new(big.Int).Sub(ecdsaK.pubKey.Params().N, one)
k.Mod(k, n)
k.Add(k, one)
// Compute temporary public key
tempX, tempY := ecdsaK.pubKey.ScalarBaseMult(k.Bytes())
tempSK.X, tempSK.Y = tempSK.Add(
ecdsaK.pubKey.X, ecdsaK.pubKey.Y,
tempX, tempY,
)
// Verify temporary public key is a valid point on the reference curve
isOn := tempSK.Curve.IsOnCurve(tempSK.X, tempSK.Y)
if !isOn {
return nil, errors.New("Failed temporary public key IsOnCurve check.")
}
return &ecdsaPublicKey{tempSK}, nil
}
type ecdsaPrivateKeyKeyDeriver struct{}
func (kd *ecdsaPrivateKeyKeyDeriver) KeyDeriv(key bccsp.Key, opts bccsp.KeyDerivOpts) (bccsp.Key, error) {
// Validate opts
if opts == nil {
return nil, errors.New("Invalid opts parameter. It must not be nil.")
}
ecdsaK := key.(*ecdsaPrivateKey)
// Re-randomized an ECDSA private key
reRandOpts, ok := opts.(*bccsp.ECDSAReRandKeyOpts)
if !ok {
return nil, fmt.Errorf("Unsupported 'KeyDerivOpts' provided [%v]", opts)
}
tempSK := &ecdsa.PrivateKey{
PublicKey: ecdsa.PublicKey{
Curve: ecdsaK.privKey.Curve,
X: new(big.Int),
Y: new(big.Int),
},
D: new(big.Int),
}
var k = new(big.Int).SetBytes(reRandOpts.ExpansionValue())
var one = new(big.Int).SetInt64(1)
n := new(big.Int).Sub(ecdsaK.privKey.Params().N, one)
k.Mod(k, n)
k.Add(k, one)
tempSK.D.Add(ecdsaK.privKey.D, k)
tempSK.D.Mod(tempSK.D, ecdsaK.privKey.PublicKey.Params().N)
// Compute temporary public key
tempX, tempY := ecdsaK.privKey.PublicKey.ScalarBaseMult(k.Bytes())
tempSK.PublicKey.X, tempSK.PublicKey.Y =
tempSK.PublicKey.Add(
ecdsaK.privKey.PublicKey.X, ecdsaK.privKey.PublicKey.Y,
tempX, tempY,
)
// Verify temporary public key is a valid point on the reference curve
isOn := tempSK.Curve.IsOnCurve(tempSK.PublicKey.X, tempSK.PublicKey.Y)
if !isOn {
return nil, errors.New("Failed temporary public key IsOnCurve check.")
}
return &ecdsaPrivateKey{tempSK}, nil
}
type aesPrivateKeyKeyDeriver struct {
conf *config
}
func (kd *aesPrivateKeyKeyDeriver) KeyDeriv(k bccsp.Key, opts bccsp.KeyDerivOpts) (bccsp.Key, error) {
// Validate opts
if opts == nil {
return nil, errors.New("Invalid opts parameter. It must not be nil.")
}
aesK := k.(*aesPrivateKey)
switch hmacOpts := opts.(type) {
case *bccsp.HMACTruncated256AESDeriveKeyOpts:
mac := hmac.New(kd.conf.hashFunction, aesK.privKey)
mac.Write(hmacOpts.Argument())
return &aesPrivateKey{mac.Sum(nil)[:kd.conf.aesBitLength], false}, nil
case *bccsp.HMACDeriveKeyOpts:
mac := hmac.New(kd.conf.hashFunction, aesK.privKey)
mac.Write(hmacOpts.Argument())
return &aesPrivateKey{mac.Sum(nil), true}, nil
default:
return nil, fmt.Errorf("Unsupported 'KeyDerivOpts' provided [%v]", opts)
}
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。